Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez García, Jorge
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorGarcía Gadañón, María 
dc.contributor.authorKheirandish Gozal, Leila
dc.contributor.authorMartín Montero, Adrián
dc.contributor.authorÁlvarez, Daniel
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2023-03-22T13:36:46Z
dc.date.available2023-03-22T13:36:46Z
dc.date.issued2020
dc.identifier.citationEntropy, 2020, vol. 22, n. 6, 670es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/58999
dc.descriptionProducción Científicaes
dc.description.abstractThe reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens’s kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPediatríaes
dc.subjectPneumology/Respiratory Systemes
dc.subject.classificationSleep apnea–hypopnea syndromees
dc.subject.classificationOximetryes
dc.subject.classificationAdaBoostes
dc.subject.classificationAirflowes
dc.subject.classificationSíndrome de apnea-hipopnea del sueñoes
dc.subject.classificationOximetríaes
dc.subject.classificationFlujo de airees
dc.titleAssessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoostes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/e22060670es
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/22/6/670es
dc.identifier.publicationfirstpage670es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleEntropyes
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación - FEDER (DPI2017-84280-R y RTC-2017-6516-1)es
dc.description.projectComisión Europea - FEDER (Programa de Cooperación Interreg V-A España-Portugal POCTEP 2014–2020)es
dc.description.projectMinisterio de Ciencia e Innovación - Ministerio de Universidades (PRE2018-085219)es
dc.description.projectUS National Institutes of Health (grants HL130984 and HL140548)es
dc.identifier.essn1099-4300es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem