Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez García, Jorge | |
dc.contributor.author | Gutiérrez Tobal, Gonzalo César | |
dc.contributor.author | García Gadañón, María | |
dc.contributor.author | Kheirandish Gozal, Leila | |
dc.contributor.author | Martín Montero, Adrián | |
dc.contributor.author | Álvarez, Daniel | |
dc.contributor.author | Campo Matias, Félix del | |
dc.contributor.author | Gozal, David | |
dc.contributor.author | Hornero Sánchez, Roberto | |
dc.date.accessioned | 2023-03-22T13:36:46Z | |
dc.date.available | 2023-03-22T13:36:46Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Entropy, 2020, vol. 22, n. 6, 670 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/58999 | |
dc.description | Producción Científica | es |
dc.description.abstract | The reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens’s kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Pediatría | es |
dc.subject | Pneumology/Respiratory System | es |
dc.subject.classification | Sleep apnea–hypopnea syndrome | es |
dc.subject.classification | Oximetry | es |
dc.subject.classification | AdaBoost | es |
dc.subject.classification | Airflow | es |
dc.subject.classification | Síndrome de apnea-hipopnea del sueño | es |
dc.subject.classification | Oximetría | es |
dc.subject.classification | Flujo de aire | es |
dc.title | Assessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoost | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2020 The Authors | es |
dc.identifier.doi | 10.3390/e22060670 | es |
dc.relation.publisherversion | https://www.mdpi.com/1099-4300/22/6/670 | es |
dc.identifier.publicationfirstpage | 670 | es |
dc.identifier.publicationissue | 6 | es |
dc.identifier.publicationtitle | Entropy | es |
dc.identifier.publicationvolume | 22 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación - FEDER (DPI2017-84280-R y RTC-2017-6516-1) | es |
dc.description.project | Comisión Europea - FEDER (Programa de Cooperación Interreg V-A España-Portugal POCTEP 2014–2020) | es |
dc.description.project | Ministerio de Ciencia e Innovación - Ministerio de Universidades (PRE2018-085219) | es |
dc.description.project | US National Institutes of Health (grants HL130984 and HL140548) | es |
dc.identifier.essn | 1099-4300 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 32 Ciencias Médicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional