• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59046

    Título
    Estimation of bearing fault severity in line-connected and inverter-fed three-phase induction motors
    Autor
    Fontes Godoy, Wagner
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Nunes da Silva, Ivan
    Goedtel, Alessandro
    Palácios, Rodrigo Henrique Cunha
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Energies 2020, vol. 13, n. 13, 3481
    Abstract
    This paper addresses a comprehensive evaluation of a bearing fault evolution and its consequent prediction concerning the remaining useful life. The proper prediction of bearing faults in their early stage is a crucial factor for predictive maintenance and mainly for the production management schedule. The detection and estimation of the progressive evolution of a bearing fault are performed by monitoring the amplitude of the current signals at the time domain. Data gathered from line-fed and inverter-fed three-phase induction motors were used to validate the proposed approach. To assess classification accuracy and fault estimation, the models described in this paper are investigated by using Artificial Neural Networks models. The paper also provides process flowcharts and classification tables to present the prognostic models used to estimate the remaining useful life of a defective bearing. Experimental results confirmed the method robustness and provide an accurate diagnosis regardless of the bearing fault stage, motor speed, load level, and type of supply.
    Materias (normalizadas)
    Ingeniería eléctrica
    Materias Unesco
    3313 Tecnología E Ingeniería Mecánicas
    3306 Ingeniería y Tecnología Eléctricas
    Palabras Clave
    Diagnosis
    Bearing faults
    Intelligent estimation
    Three-phase induction motor
    Diagnóstico
    Fallas en rodamientos
    Estimación inteligente
    Revisión por pares
    SI
    DOI
    10.3390/en13133481
    Patrocinador
    CAPES (process BEX552269/2011-5)
    National Council for Scientific and Technological Development (grant #474290/2008-3, #473576/2011-2, #552269/2011-5, #307220/2016-8)
    Version del Editor
    https://www.mdpi.com/1996-1073/13/13/3481
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59046
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP45 - Artículos de revista [47]
    Show full item record
    Files in this item
    Nombre:
    Estimation-of-Bearing-Fault-Severity.pdf
    Tamaño:
    4.185Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10