Mostrar el registro sencillo del ítem

dc.contributor.authorBazán, Gustavo Henrique
dc.contributor.authorGoedtel, Alessandro
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.date.accessioned2023-05-09T10:46:03Z
dc.date.available2023-05-09T10:46:03Z
dc.date.issued2021
dc.identifier.citationElectronics, 2021, vol. 10, n. 12, 1462es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59546
dc.descriptionProducción Científicaes
dc.description.abstractInduction motors are very robust, with low operating and maintenance costs, and are therefore widely used in industry. They are, however, not fault-free, with bearings and rotor bars accounting for about 50% of the total failures. This work presents a two-stage approach for three-phase induction motors diagnosis based on mutual information measures of the current signals, principal component analysis, and intelligent systems. In a first stage, the fault is identified, and, in a second stage, the severity of the defect is diagnosed. A case study is presented where different severities of bearing wear and bar breakage are analyzed. To test the robustness of the proposed method, voltage imbalances and load torque variations are considered. The results reveal the promising performance of the proposal with overall accuracies above 90% in all cases, and in many scenarios 100% of the cases are correctly classified. This work also evaluates different strategies for extracting the signals, showing the possibility of reducing the amount of information needed. Results show a satisfactory relation between efficiency and computational cost, with decreases in accuracy of less than 4% but reducing the amount of data by more than 90%, facilitating the efficient use of this method in embedded systems.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectIngeniería eléctricaes
dc.subjectMotores de inducciónes
dc.subject.classificationMulti-fault diagnosises
dc.subject.classificationPrincipal component analysises
dc.subject.classificationPattern recognitiones
dc.subject.classificationDiagnóstico multifalloes
dc.subject.classificationAnálisis de componentes principaleses
dc.subject.classificationReconocimiento de patroneses
dc.titleMulti-fault diagnosis in three-phase induction motors using data optimization and machine learning techniqueses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Authorses
dc.identifier.doi10.3390/electronics10121462es
dc.relation.publisherversionhttps://www.mdpi.com/2079-9292/10/12/1462es
dc.identifier.publicationfirstpage1462es
dc.identifier.publicationissue12es
dc.identifier.publicationtitleElectronicses
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.description.projectConsejo Nacional de Desarrollo Científico y Tecnológico (processes No. 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3)es
dc.identifier.essn2079-9292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem