Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Depraect, Octavio
dc.contributor.authorMirzazada, Inji
dc.contributor.authorMartínez Mendoza, Leonardo José
dc.contributor.authorRegueira Marcos, Lois
dc.contributor.authorMuñoz Torre, Raúl 
dc.date.accessioned2023-05-23T12:33:50Z
dc.date.available2023-05-23T12:33:50Z
dc.date.issued2023
dc.identifier.citationJournal of Water Process Engineering, 2023, vol. 53, 103840es
dc.identifier.issn2214-7144es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59685
dc.descriptionProducción Científicaes
dc.description.abstractThe present study investigated the physicochemical and microbiological changes occurring during the storage of simulated restaurant food waste (FW) and how such changes affected its biohydrogen and biogas production potential. FW was stored for 72 h in a closed atmosphere under two different scenarios: i) without and ii) with inoculation of a mixed microbial culture harboring lactic acid bacteria (LAB). Both storage scenarios resulted in similar biotic and abiotic changes in FW. Particularly, FW was pre-acidified and pre-hydrolyzed to some extent during the storage, resulting in a feedstock enriched in LAB (≈ 95 % total relative abundance) and lactate (10.5–12.3 g/L, 87.0–90.5 % selectivity). Biochemical hydrogen potential tests revealed that the use of stored FW resulted in similar or even higher hydrogen production efficiencies compared to that of non-stored FW, achieving up to 60 NmL H2/g VS added and a maximum volumetric hydrogen production rate of 9.7 NL H2/L-d. Metabolically, the conversion of lactate into hydrogen was crucial regardless of the use of non-stored or stored FW, albeit the presence of fermentable carbohydrates in the substrate was also essential either to produce lactate or to co-produce extra hydrogen. On the contrary, biochemical methane potential tests showed that the biogas production potential of FW was not affected by storage, yielding on average 400 NmL CH4/g VS added and revealing that lactate oxidation to methane precursors represented an important step in FW biomethanization.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMicrobiologyes
dc.subjectBiochemistryes
dc.subject.classificationBiogases
dc.subject.classificationHydrogenes
dc.subject.classificationLactatees
dc.subject.classificationStoragees
dc.subject.classificationBiogáses
dc.subject.classificationHidrógenoes
dc.subject.classificationLactatoes
dc.subject.classificationAlmacenamientoes
dc.titleBiotic and abiotic insights into the storage of food waste and its effect on biohydrogen and methane production potentiales
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.jwpe.2023.103840es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2214714423003598?via%3Dihubes
dc.identifier.publicationfirstpage103840es
dc.identifier.publicationtitleJournal of Water Process Engineeringes
dc.identifier.publicationvolume53es
dc.peerreviewedSIes
dc.description.projectEuropean Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 894515es
dc.description.projectMinisterio de Ciencia e Innovación - AEI and European Union NextGenerationEU/PRTR (RYC2021-034559-I)es
dc.description.projectJunta de Castilla y León and the European FEDER Programme (CLU 2017-09, CL-EI-2021-07 y UIC 315)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/894515
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3303.03 Procesos Químicoses
dc.subject.unesco2414 Microbiologíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem