Mostrar el registro sencillo del ítem
dc.contributor.author | Rustam, Furqan | |
dc.contributor.author | Aslam, Naila | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.contributor.author | Khan, Yaser Daanial | |
dc.contributor.author | Vidal Mazón, Juan Luis | |
dc.contributor.author | Rodríguez, Carmen Lili | |
dc.contributor.author | Ashraf, Imran | |
dc.date.accessioned | 2023-07-04T11:15:33Z | |
dc.date.available | 2023-07-04T11:15:33Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Healthcare, 2022, Vol. 10, Nº. 11, 2230 | es |
dc.identifier.issn | 2227-9032 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/60054 | |
dc.description | Producción Científica | es |
dc.description.abstract | White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Leucocytes | es |
dc.subject | Hematology | es |
dc.subject | Sangre - Glóbulos blancos | es |
dc.subject | Blood - Diseases | es |
dc.subject | Sangre - Enfermedades | es |
dc.subject | Leukemia | es |
dc.subject | Leucemia | es |
dc.subject | Image processing | es |
dc.subject | Diagnóstico por imágenes - Técnicas digitales | es |
dc.subject | Imágenes, Sistemas de, en medicina | es |
dc.subject | Computational intelligence | es |
dc.subject | Microscopy | es |
dc.subject | Microscopia médica | es |
dc.title | White blood cell classification using texture and RGB features of oversampled microscopic images | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/healthcare10112230 | es |
dc.relation.publisherversion | https://www.mdpi.com/2227-9032/10/11/2230 | es |
dc.identifier.publicationfirstpage | 2230 | es |
dc.identifier.publicationissue | 11 | es |
dc.identifier.publicationtitle | Healthcare | es |
dc.identifier.publicationvolume | 10 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 2227-9032 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3205.04 Hematología | es |
dc.subject.unesco | 3207.13 Oncología | es |
dc.subject.unesco | 2209.90 Tratamiento Digital. Imágenes | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional