Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60054
Título
White blood cell classification using texture and RGB features of oversampled microscopic images
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Healthcare, 2022, Vol. 10, Nº. 11, 2230
Resumen
White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.
Materias (normalizadas)
Leucocytes
Hematology
Sangre - Glóbulos blancos
Blood - Diseases
Sangre - Enfermedades
Leukemia
Leucemia
Image processing
Diagnóstico por imágenes - Técnicas digitales
Imágenes, Sistemas de, en medicina
Computational intelligence
Microscopy
Microscopia médica
Materias Unesco
3205.04 Hematología
3207.13 Oncología
2209.90 Tratamiento Digital. Imágenes
ISSN
2227-9032
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional