Mostrar el registro sencillo del ítem

dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorCalvo, Eva
dc.contributor.authorÁlvarez, Daniel
dc.contributor.authorKheirandish Gozal, Leila
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2023-09-11T12:54:50Z
dc.date.available2023-09-11T12:54:50Z
dc.date.issued2023
dc.identifier.citationComputers in Biology and Medicine, 2023, vol. 165, 107419es
dc.identifier.issn0010-4825es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61507
dc.descriptionProducción Científicaes
dc.description.abstractAutomatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSueño, trastornos deles
dc.subjectPediatríaes
dc.subject.classificationDeep learninges
dc.subject.classificationElectroencephalogram (EEG)es
dc.subject.classificationPediatric obstructive sleep apnea (OSA)es
dc.subject.classificationAprendizaje profundoes
dc.subject.classificationElectroencefalograma (EEG)es
dc.subject.classificationApnea obstructiva del sueño pediátrica (AOS)es
dc.titleAn explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apneaes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.compbiomed.2023.107419es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0010482523008843?via%3Dihubes
dc.identifier.publicationfirstpage107419es
dc.identifier.publicationtitleComputers in Biology and Medicinees
dc.identifier.publicationvolume165es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación- Agencia Estatal de Investigación- FEDER-EU y NextGenerationEU/PRTR (PID2020-115468RB-I00 y PDC2021-120775-I00)es
dc.description.projectSociedad Española de Neumología y Cirugía Torácica (SEPAR) (649/2018)es
dc.description.projectCIBER -Consorcio Centro de Investigación Biomédica en Red- Instituto de Salud Carlos III (CB19/01/00012)es
dc.description.projectInstitutos Nacionales de Salud (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)es
dc.description.projectInstituto Nacional del Corazón, los Pulmones y la Sangre (R24 HL114473, 75N92019R002)es
dc.description.projectMinisterio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3201.10 Pediatríaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem