• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61507

    Título
    An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea
    Autor
    Vaquerizo Villar, FernandoAutoridad UVA Orcid
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Calvo, Eva
    Álvarez González, DanielAutoridad UVA Orcid
    Kheirandish Gozal, Leila
    Campo Matias, Félix delAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers in Biology and Medicine, 2023, vol. 165, 107419
    Resumen
    Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests.
    Materias (normalizadas)
    Sueño, trastornos del
    Pediatría
    Materias Unesco
    3201.10 Pediatría
    Palabras Clave
    Deep learning
    Electroencephalogram (EEG)
    Pediatric obstructive sleep apnea (OSA)
    Aprendizaje profundo
    Electroencefalograma (EEG)
    Apnea obstructiva del sueño pediátrica (AOS)
    ISSN
    0010-4825
    Revisión por pares
    SI
    DOI
    10.1016/j.compbiomed.2023.107419
    Patrocinador
    Ministerio de Ciencia e Innovación- Agencia Estatal de Investigación- FEDER-EU y NextGenerationEU/PRTR (PID2020-115468RB-I00 y PDC2021-120775-I00)
    Sociedad Española de Neumología y Cirugía Torácica (SEPAR) (649/2018)
    CIBER -Consorcio Centro de Investigación Biomédica en Red- Instituto de Salud Carlos III (CB19/01/00012)
    Institutos Nacionales de Salud (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)
    Instituto Nacional del Corazón, los Pulmones y la Sangre (R24 HL114473, 75N92019R002)
    Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0010482523008843?via%3Dihub
    Propietario de los Derechos
    © 2023 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/61507
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    An-explainable-deep-learning.pdf
    Tamaño:
    12.51Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10