Mostrar el registro sencillo del ítem

dc.contributor.authorDiez, Francisco Javier
dc.contributor.authorCorrea Guimaraes, Adriana 
dc.contributor.authorChico Santamarta, Leticia
dc.contributor.authorMartínez Rodríguez, Andrés 
dc.contributor.authorMurcia Velasco, Diana Alexandra
dc.contributor.authorAndara, Renato
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.date.accessioned2023-10-05T11:17:50Z
dc.date.available2023-10-05T11:17:50Z
dc.date.issued2022
dc.identifier.citationSensors, 2022, Vol. 22, Nº. 13, 4850es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61886
dc.descriptionProducción Científicaes
dc.description.abstractThis study evaluates the predictive modeling of the daily ambient temperature (maximum, Tmax; average, Tave; and minimum, Tmin) and its hourly estimation (T0h, …, T23h) using artificial neural networks (ANNs) for agricultural applications. The data, 2004–2010, were used for training and 2011 for validation, recorded at the SIAR agrometeorological station of Mansilla Mayor (León). ANN models for daily prediction have three neurons in the output layer (Tmax(t + 1), Tave(t + 1), Tmin(t + 1)). Two models were evaluated: (1) with three entries (Tmax(t), Tave(t), Tmin(t)), and (2) adding the day of the year (J(t)). The inclusion of J(t) improves the predictions, with an RMSE for Tmax = 2.56, Tave = 1.65 and Tmin = 2.09 (°C), achieving better results than the classical statistical methods (typical year Tave = 3.64 °C; weighted moving mean Tmax = 2.76, Tave = 1.81 and Tmin = 2.52 (°C); linear regression Tave = 1.85 °C; and Fourier Tmax = 3.75, Tave = 2.67 and Tmin = 3.34 (°C)) for one year. The ANN models for hourly estimation have 24 neurons in the output layer (T0h(t), …, T23h(t)) corresponding to the mean hourly temperature. In this case, the inclusion of the day of the year (J(t)) does not significantly improve the estimations, with an RMSE = 1.25 °C, but it improves the results of the ASHRAE method, which obtains an RMSE = 2.36 °C for one week. The results obtained, with lower prediction errors than those achieved with the classical methods, confirm the interest in using the ANN models for predicting temperatures in agricultural applications.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAmbient temperaturees
dc.subjectEvapotranspirationes
dc.subjectClimatees
dc.subjectClimaes
dc.subjectEvaporación (Meteorología) - Españaes
dc.subjectMeteorology, Agriculturales
dc.subjectMeteorología agrícolaes
dc.subjectRedes neuronales (Informática)es
dc.subjectNeural networks (Computer science)es
dc.subjectArtificial intelligencees
dc.subjectPrecision farminges
dc.subjectAgricultura - Innovaciones tecnológicases
dc.subjectPredictiones
dc.subjectCastilla y León - Climaes
dc.titlePrediction of daily ambient temperature and its hourly estimation using artificial neural networks in an agrometeorological station in Castile and León, Spaines
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/s22134850es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/13/4850es
dc.identifier.publicationfirstpage4850es
dc.identifier.publicationissue13es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.description.projectUnión Europea - (project H2020-FNR-2020-1/CE-FNR-07-2020)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3102 Ingeniería Agrícolaes
dc.subject.unesco2502 Climatologíaes
dc.subject.unesco2509 Meteorologíaes
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem