• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61886

    Título
    Prediction of daily ambient temperature and its hourly estimation using artificial neural networks in an agrometeorological station in Castile and León, Spain
    Autor
    Diez, Francisco Javier
    Correa Guimaraes, AdrianaAutoridad UVA
    Chico Santamarta, Leticia
    Martínez Rodríguez, AndrésAutoridad UVA Orcid
    Murcia Velasco, Diana AlexandraAutoridad UVA
    Andara, Renato
    Navas Gracia, Luis ManuelAutoridad UVA
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2022, Vol. 22, Nº. 13, 4850
    Zusammenfassung
    This study evaluates the predictive modeling of the daily ambient temperature (maximum, Tmax; average, Tave; and minimum, Tmin) and its hourly estimation (T0h, …, T23h) using artificial neural networks (ANNs) for agricultural applications. The data, 2004–2010, were used for training and 2011 for validation, recorded at the SIAR agrometeorological station of Mansilla Mayor (León). ANN models for daily prediction have three neurons in the output layer (Tmax(t + 1), Tave(t + 1), Tmin(t + 1)). Two models were evaluated: (1) with three entries (Tmax(t), Tave(t), Tmin(t)), and (2) adding the day of the year (J(t)). The inclusion of J(t) improves the predictions, with an RMSE for Tmax = 2.56, Tave = 1.65 and Tmin = 2.09 (°C), achieving better results than the classical statistical methods (typical year Tave = 3.64 °C; weighted moving mean Tmax = 2.76, Tave = 1.81 and Tmin = 2.52 (°C); linear regression Tave = 1.85 °C; and Fourier Tmax = 3.75, Tave = 2.67 and Tmin = 3.34 (°C)) for one year. The ANN models for hourly estimation have 24 neurons in the output layer (T0h(t), …, T23h(t)) corresponding to the mean hourly temperature. In this case, the inclusion of the day of the year (J(t)) does not significantly improve the estimations, with an RMSE = 1.25 °C, but it improves the results of the ASHRAE method, which obtains an RMSE = 2.36 °C for one week. The results obtained, with lower prediction errors than those achieved with the classical methods, confirm the interest in using the ANN models for predicting temperatures in agricultural applications.
    Materias (normalizadas)
    Ambient temperature
    Evapotranspiration
    Climate
    Clima
    Evaporación (Meteorología) - España
    Meteorology, Agricultural
    Meteorología agrícola
    Redes neuronales (Informática)
    Neural networks (Computer science)
    Artificial intelligence
    Precision farming
    Agricultura - Innovaciones tecnológicas
    Prediction
    Castilla y León - Clima
    Materias Unesco
    3102 Ingeniería Agrícola
    2502 Climatología
    2509 Meteorología
    1203.04 Inteligencia Artificial
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s22134850
    Patrocinador
    Unión Europea - (project H2020-FNR-2020-1/CE-FNR-07-2020)
    Version del Editor
    https://www.mdpi.com/1424-8220/22/13/4850
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/61886
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Prediction-of-Daily-Ambient-Temperature.pdf
    Tamaño:
    1.303Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10