Mostrar el registro sencillo del ítem

dc.contributor.authorAgarwal, Deevyankar
dc.contributor.authorBerbís, Manuel Álvaro
dc.contributor.authorMartín Noguerol, Teodoro
dc.contributor.authorLuna, Antonio
dc.contributor.authorGarcía Parrado, Sara Carmen
dc.contributor.authorTorre Díez, Isabel de la 
dc.date.accessioned2023-10-16T11:16:03Z
dc.date.available2023-10-16T11:16:03Z
dc.date.issued2022
dc.identifier.citationMathematics, 2022, Vol. 10, Nº. 15, 2575es
dc.identifier.issn2227-7390es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61987
dc.descriptionProducción Científicaes
dc.description.abstractThis study uses magnetic resonance imaging (MRI) data to propose end-to-end learning implementing volumetric convolutional neural network (CNN) models for two binary classification tasks: Alzheimer’s disease (AD) vs. cognitively normal (CN) and stable mild cognitive impairment (sMCI) vs. AD. The baseline MP-RAGE T1 MR images of 245 AD patients and 229 with sMCI were obtained from the ADNI dataset, whereas 245 T1 MR images of CN people were obtained from the IXI dataset. All of the images were preprocessed in four steps: N4 bias field correction, denoising, brain extraction, and registration. End-to-end-learning-based deep CNNs were used to discern between different phases of AD. Eight CNN-based architectures were implemented and assessed. The DenseNet264 excelled in both types of classification, with 82.5% accuracy and 87.63% AUC for training and 81.03% accuracy for testing relating to the sMCI vs. AD and 100% accuracy and 100% AUC for training and 99.56% accuracy for testing relating to the AD vs. CN. Deep learning approaches based on CNN and end-to-end learning offer a strong tool for examining minute but complex properties in MR images which could aid in the early detection and prediction of Alzheimer’s disease in clinical settings.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBrain - Diseaseses
dc.subjectCerebro - Enfermedadeses
dc.subjectAlzheimer's diseasees
dc.subjectAlzheimer's disease - Diagnosises
dc.subjectAlzheimer, Enfermedad dees
dc.subjectNeural networks (Computer science)es
dc.subjectConvolutional neural networkes
dc.subjectRedes neuronales (Informática)es
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.subjectMild cognitive impairmentes
dc.subjectMagnetic resonance imaginges
dc.subjectResonancia magnéticaes
dc.subjectNeurologyes
dc.subjectNeuroimaginges
dc.subjectImage processinges
dc.subjectImágenes, Tratamiento de lases
dc.titleEnd-to-end deep learning architectures using 3D neuroimaging biomarkers for early Alzheimer’s diagnosises
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/math10152575es
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/10/15/2575es
dc.identifier.publicationfirstpage2575es
dc.identifier.publicationissue15es
dc.identifier.publicationtitleMathematicses
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.description.projectComisión Europea y Ministerio de Industria,Comercio y Turismo - (project AAL-20125036)es
dc.identifier.essn2227-7390es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.17 Informáticaes
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco3205.07 Neurologíaes
dc.subject.unesco3314 Tecnología Médicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem