• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62366

    Título
    Deep Reinforcement Learning Applied to Computation Offloading of Vehicular Applications: A Comparison
    Autor
    Ferens Michalek, Mieszko Jan
    Hortelano Haro, DiegoAutoridad UVA
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Durán Barroso, Ramón JoséAutoridad UVA Orcid
    Aguado Manzano, Juan CarlosAutoridad UVA Orcid
    Ruiz Pérez, LidiaAutoridad UVA Orcid
    Merayo Álvarez, NoemíAutoridad UVA Orcid
    Fernández Reguero, PatriciaAutoridad UVA Orcid
    Lorenzo Toledo, Rubén MateoAutoridad UVA Orcid
    Abril Domingo, Evaristo JoséAutoridad UVA Orcid
    Congreso
    2022 International Balkan Conference on Communications and Networking (BalkanCom)
    Año del Documento
    2022
    Editorial
    Institute of Electrical and Electronics Engineers (IEEE)
    Descripción Física
    5 p.
    Descripción
    Producción Científica
    Documento Fuente
    2022 International Balkan Conference on Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022, pp. 31-35
    Résumé
    An observable trend in recent years is the increasing demand for more complex services designed to be used with portable or automotive embedded devices. The problem is that these devices may lack the computational resources necessary to comply with service requirements. To solve it, cloud and edge computing, and in particular, the recent multi-access edge computing (MEC) paradigm, have been proposed. By offloading the processing of computational tasks from devices or vehicles to an external network, a larger amount of computational resources, placed in different locations, becomes accessible. However, this in turn creates the issue of deciding where each task should be executed. In this paper, we model the problem of computation offloading of vehicular applications to solve it using deep reinforcement learning (DRL) and evaluate the performance of different DRL algorithms and heuristics, showing the advantages of the former methods. Moreover, the impact of two scheduling techniques in computing nodes and two reward strategies in the DRL methods are also analyzed and discussed.
    Palabras Clave
    Deep Reinforcement Learning
    Vehicular Applications
    Computation Offloading
    Edge Computing
    DOI
    10.1109/BalkanCom55633.2022.9900545
    Patrocinador
    Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
    Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033 y RED2018-102585-T); EU H2020 GA no. 856967.
    Version del Editor
    https://ieeexplore.ieee.org/abstract/document/9900545
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62366
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    mferens_Deep_reinforcement_learning_applied_postprint.pdf
    Tamaño:
    591.3Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10