Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez García, Jorge
dc.contributor.authorGarcía Gadañón, María 
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorKheirandish Gozal, Leila
dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorGozal, David
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2023-10-31T13:08:56Z
dc.date.available2023-10-31T13:08:56Z
dc.date.issued2024
dc.identifier.citationBiomedical Signal Processing and Control, 2024, vol. 87, Part B, 105490es
dc.identifier.issn1746-8094es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/62524
dc.descriptionProducción Científicaes
dc.description.abstractDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPediatríaes
dc.subjectBiomedical engineeringes
dc.subject.classificationObstructive sleep apneaes
dc.subject.classificationChildrenes
dc.subject.classificationAirflowes
dc.subject.classificationApnea obstructiva del sueñoes
dc.subject.classificationNiñoses
dc.subject.classificationFlujo de airees
dc.titleAn explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signalses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.bspc.2023.105490es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1746809423009230?via%3Dihubes
dc.identifier.publicationfirstpage105490es
dc.identifier.publicationtitleBiomedical Signal Processing and Controles
dc.identifier.publicationvolume87es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)es
dc.description.projectCIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos IIIes
dc.description.projectNational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)es
dc.description.projectNational Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)es
dc.description.projectMinisterio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem