Mostrar el registro sencillo del ítem
dc.contributor.author | Elvira Ortiz, David Alejandro | |
dc.contributor.author | Saucedo Dorantes, Juan José | |
dc.contributor.author | Osornio Ríos, Roque A. | |
dc.contributor.author | Moríñigo Sotelo, Daniel | |
dc.contributor.author | Antonino Daviu, Jose A. | |
dc.date.accessioned | 2023-11-16T13:10:00Z | |
dc.date.available | 2023-11-16T13:10:00Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Electronics, 2022, Vol. 11, Nº. 2, 287 | es |
dc.identifier.issn | 2079-9292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/63038 | |
dc.description | Producción Científica | es |
dc.description.abstract | Wind generation has recently become an essential renewable power supply option. Wind generators are integrated with electrical machines that require correct functionality. However, the increasing use of non-linear loads introduces undesired disturbances that may compromise the integrity of the electrical machines inside the wind generator. Therefore, this work proposes a five-step methodology for power quality disturbance detection in grids with injection of wind farm energy. First, a database with synthetic signals is generated, to be used in the training process. Then, a multi-domain feature estimation is carried out. To reduce the problematic dimensionality, the features that provide redundant information are eliminated through an optimized feature selection performed by means of a genetic algorithm and the principal component analysis. Additionally, each one of the characteristic feature matrices of every considered condition are modeled through a specific self-organizing map neuron grid so they can be shown in a 2-D representation. Since the SOM model provides a pattern of the behavior of every disturbance, they are used as inputs of the classifier, based in a softmax layer neural network that performs the power quality disturbance detection of six different conditions: healthy or normal, sag or swell voltages, transients, voltage fluctuations and harmonic distortion. Thus, the proposed method is validated using a set of synthetic signals and is then tested using two different sets of real signals from an IEEE workgroup and from a wind park located in Spain. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Artificial intelligence | es |
dc.subject | Electric machinery | es |
dc.subject | Máquinas eléctricas | es |
dc.subject | Electric generators | es |
dc.subject | Generadores eléctricos | es |
dc.subject | Renewable energy resources | es |
dc.subject | Energías renovables | es |
dc.subject | Wind power | es |
dc.subject | Energía eólica | es |
dc.subject | Optimization | es |
dc.subject | Self-organizing maps | es |
dc.subject | Electric power systems - Quality control | es |
dc.subject | Energía eléctrica - Distribución - Calidad - Control | es |
dc.subject | Electrical Engineering | es |
dc.subject | Ingeniería eléctrica | es |
dc.title | Power quality monitoring strategy based on an optimized multi-domain feature selection for the detection and classification of disturbances in wind generators | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/electronics11020287 | es |
dc.relation.publisherversion | https://www.mdpi.com/2079-9292/11/2/287 | es |
dc.identifier.publicationfirstpage | 287 | es |
dc.identifier.publicationissue | 2 | es |
dc.identifier.publicationtitle | Electronics | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.description.project | Universidad Autónoma de Querétaro, Fondo Para El Desarrollo Del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011) | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-095747-B-I00) | es |
dc.identifier.essn | 2079-9292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 2202.03 Electricidad | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional