Mostrar el registro sencillo del ítem

dc.contributor.authorElvira Ortiz, David Alejandro
dc.contributor.authorSaucedo Dorantes, Juan José
dc.contributor.authorOsornio Ríos, Roque A.
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorAntonino Daviu, Jose A.
dc.date.accessioned2023-11-16T13:10:00Z
dc.date.available2023-11-16T13:10:00Z
dc.date.issued2022
dc.identifier.citationElectronics, 2022, Vol. 11, Nº. 2, 287es
dc.identifier.issn2079-9292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/63038
dc.descriptionProducción Científicaes
dc.description.abstractWind generation has recently become an essential renewable power supply option. Wind generators are integrated with electrical machines that require correct functionality. However, the increasing use of non-linear loads introduces undesired disturbances that may compromise the integrity of the electrical machines inside the wind generator. Therefore, this work proposes a five-step methodology for power quality disturbance detection in grids with injection of wind farm energy. First, a database with synthetic signals is generated, to be used in the training process. Then, a multi-domain feature estimation is carried out. To reduce the problematic dimensionality, the features that provide redundant information are eliminated through an optimized feature selection performed by means of a genetic algorithm and the principal component analysis. Additionally, each one of the characteristic feature matrices of every considered condition are modeled through a specific self-organizing map neuron grid so they can be shown in a 2-D representation. Since the SOM model provides a pattern of the behavior of every disturbance, they are used as inputs of the classifier, based in a softmax layer neural network that performs the power quality disturbance detection of six different conditions: healthy or normal, sag or swell voltages, transients, voltage fluctuations and harmonic distortion. Thus, the proposed method is validated using a set of synthetic signals and is then tested using two different sets of real signals from an IEEE workgroup and from a wind park located in Spain.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial intelligencees
dc.subjectElectric machineryes
dc.subjectMáquinas eléctricases
dc.subjectElectric generatorses
dc.subjectGeneradores eléctricoses
dc.subjectRenewable energy resourceses
dc.subjectEnergías renovableses
dc.subjectWind poweres
dc.subjectEnergía eólicaes
dc.subjectOptimizationes
dc.subjectSelf-organizing mapses
dc.subjectElectric power systems - Quality controles
dc.subjectEnergía eléctrica - Distribución - Calidad - Controles
dc.subjectElectrical Engineeringes
dc.subjectIngeniería eléctricaes
dc.titlePower quality monitoring strategy based on an optimized multi-domain feature selection for the detection and classification of disturbances in wind generatorses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/electronics11020287es
dc.relation.publisherversionhttps://www.mdpi.com/2079-9292/11/2/287es
dc.identifier.publicationfirstpage287es
dc.identifier.publicationissue2es
dc.identifier.publicationtitleElectronicses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectUniversidad Autónoma de Querétaro, Fondo Para El Desarrollo Del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-095747-B-I00)es
dc.identifier.essn2079-9292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco2202.03 Electricidades


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem