• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63038

    Título
    Power quality monitoring strategy based on an optimized multi-domain feature selection for the detection and classification of disturbances in wind generators
    Autor
    Elvira Ortiz, David Alejandro
    Saucedo Dorantes, Juan José
    Osornio Ríos, Roque Alfredo
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Antonino Daviu, Jose A.
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Electronics, 2022, Vol. 11, Nº. 2, 287
    Resumo
    Wind generation has recently become an essential renewable power supply option. Wind generators are integrated with electrical machines that require correct functionality. However, the increasing use of non-linear loads introduces undesired disturbances that may compromise the integrity of the electrical machines inside the wind generator. Therefore, this work proposes a five-step methodology for power quality disturbance detection in grids with injection of wind farm energy. First, a database with synthetic signals is generated, to be used in the training process. Then, a multi-domain feature estimation is carried out. To reduce the problematic dimensionality, the features that provide redundant information are eliminated through an optimized feature selection performed by means of a genetic algorithm and the principal component analysis. Additionally, each one of the characteristic feature matrices of every considered condition are modeled through a specific self-organizing map neuron grid so they can be shown in a 2-D representation. Since the SOM model provides a pattern of the behavior of every disturbance, they are used as inputs of the classifier, based in a softmax layer neural network that performs the power quality disturbance detection of six different conditions: healthy or normal, sag or swell voltages, transients, voltage fluctuations and harmonic distortion. Thus, the proposed method is validated using a set of synthetic signals and is then tested using two different sets of real signals from an IEEE workgroup and from a wind park located in Spain.
    Materias (normalizadas)
    Artificial intelligence
    Electric machinery
    Máquinas eléctricas
    Electric generators
    Generadores eléctricos
    Renewable energy resources
    Energías renovables
    Wind power
    Energía eólica
    Optimization
    Self-organizing maps
    Electric power systems - Quality control
    Energía eléctrica - Distribución - Calidad - Control
    Electrical Engineering
    Ingeniería eléctrica
    Materias Unesco
    1203.04 Inteligencia Artificial
    2202.03 Electricidad
    ISSN
    2079-9292
    Revisión por pares
    SI
    DOI
    10.3390/electronics11020287
    Patrocinador
    Universidad Autónoma de Querétaro, Fondo Para El Desarrollo Del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011)
    Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-095747-B-I00)
    Version del Editor
    https://www.mdpi.com/2079-9292/11/2/287
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/63038
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP45 - Artículos de revista [44]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Power-Quality-Monitoring-Strategy.pdf
    Tamaño:
    1.556Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10