Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Galar, Aitor
dc.contributor.authorLamelas, María Teresa
dc.contributor.authorDomingo Ruiz, Darío
dc.date.accessioned2023-12-01T12:52:47Z
dc.date.available2023-12-01T12:52:47Z
dc.date.issued2023
dc.identifier.citationRemote Sensing, 2023, Vol. 15, Nº. 3, 710es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/63408
dc.descriptionProducción Científicaes
dc.description.abstractAmong the main objectives of Natura 2000 Network sites management plans is monitoring their conservation status under a reasonable cost and with high temporal frequency. The aim of this study is to assess the ability of single-photon light detection and ranging (LiDAR) technology (14 points per m2) and Sentinel-2 data to classify the conservation status of oak forests in four special areas of conservation in Navarra Province (Spain) that comprise three habitats. To capture the variability of conservation status within the three habitats, we first performed a random stratified sampling based on conservation status measured in the field, canopy cover, and terrain slope and height. Thereafter, we compared two metric selection approaches, namely Kruskal–Wallis and Dunn tests, and two machine learning classification methods, random forest (RF) and support vector machine (SVM), to classify the conservation statuses using LiDAR and Sentinel-2 data. The best-fit classification model, which included only LiDAR metrics, was obtained using the random forest method, with an overall classification accuracy after validation of 83.01%, 75.51%, and 88.25% for Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240) habitats, respectively. The models include three to six LiDAR metrics, with the structural diversity indices (LiDAR height evenness index, LHEI, and LiDAR height diversity index, LHDI) and canopy cover (FCC) being the most relevant ones. The inclusion of the NDVI index from the Sentinel-2 image did not improve the classification accuracy significantly. This approach demonstrates its value for classifying and subsequently mapping conservation statuses in oak groves and other Natura 2000 Network habitat sites at a regional scale, which could serve for more effective monitoring and management of high biodiversity habitats.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNature conservationes
dc.subjectNaturaleza - Conservaciónes
dc.subjectLandscape Ecologyes
dc.subjectEcología del paisajees
dc.subjectEnvironnement - Gestion - Europees
dc.subjectMedio ambiente - Países de la Unión Europeaes
dc.subjectBosques - Europaes
dc.subjectBosques - Gestión - Europaes
dc.subjectForest management - Europees
dc.subjectForests and forestryes
dc.subjectBosques y silviculturaes
dc.subjectForest mappinges
dc.subjectOptical radares
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.subjectBosques - Conservación - España - Navarra
dc.subject.classificationLiDARes
dc.subject.classificationSentinel -2es
dc.titleAssessment of oak groves conservation statuses in Natura 2000 sacs with single photon Lidar and Sentinel-2 dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/rs15030710es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/15/3/710es
dc.identifier.publicationfirstpage710es
dc.identifier.publicationissue3es
dc.identifier.publicationtitleRemote Sensinges
dc.identifier.publicationvolume15es
dc.peerreviewedSIes
dc.description.projectAyudas Margarita Salas, European Union-Next GenerationEU - (grant MS-240621)es
dc.identifier.essn2072-4292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3106 Ciencia Forestales
dc.subject.unesco3106.08 Silviculturaes
dc.subject.unesco5902.08 Política del Medio Ambientees
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem