• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ciencias Agroforestales
    • DEP08 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ciencias Agroforestales
    • DEP08 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63408

    Título
    Assessment of oak groves conservation statuses in Natura 2000 sacs with single photon Lidar and Sentinel-2 data
    Autor
    García Galar, Aitor
    Lamelas, María Teresa
    Domingo Ruiz, DaríoAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Remote Sensing, 2023, Vol. 15, Nº. 3, 710
    Resumen
    Among the main objectives of Natura 2000 Network sites management plans is monitoring their conservation status under a reasonable cost and with high temporal frequency. The aim of this study is to assess the ability of single-photon light detection and ranging (LiDAR) technology (14 points per m2) and Sentinel-2 data to classify the conservation status of oak forests in four special areas of conservation in Navarra Province (Spain) that comprise three habitats. To capture the variability of conservation status within the three habitats, we first performed a random stratified sampling based on conservation status measured in the field, canopy cover, and terrain slope and height. Thereafter, we compared two metric selection approaches, namely Kruskal–Wallis and Dunn tests, and two machine learning classification methods, random forest (RF) and support vector machine (SVM), to classify the conservation statuses using LiDAR and Sentinel-2 data. The best-fit classification model, which included only LiDAR metrics, was obtained using the random forest method, with an overall classification accuracy after validation of 83.01%, 75.51%, and 88.25% for Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240) habitats, respectively. The models include three to six LiDAR metrics, with the structural diversity indices (LiDAR height evenness index, LHEI, and LiDAR height diversity index, LHDI) and canopy cover (FCC) being the most relevant ones. The inclusion of the NDVI index from the Sentinel-2 image did not improve the classification accuracy significantly. This approach demonstrates its value for classifying and subsequently mapping conservation statuses in oak groves and other Natura 2000 Network habitat sites at a regional scale, which could serve for more effective monitoring and management of high biodiversity habitats.
    Materias (normalizadas)
    Nature conservation
    Naturaleza - Conservación
    Landscape Ecology
    Ecología del paisaje
    Environnement - Gestion - Europe
    Medio ambiente - Países de la Unión Europea
    Bosques - Europa
    Bosques - Gestión - Europa
    Forest management - Europe
    Forests and forestry
    Bosques y silvicultura
    Forest mapping
    Optical radar
    Machine learning
    Aprendizaje automático
    Artificial intelligence
    Bosques - Conservación - España - Navarra
    Materias Unesco
    3106 Ciencia Forestal
    3106.08 Silvicultura
    5902.08 Política del Medio Ambiente
    1203.04 Inteligencia Artificial
    Palabras Clave
    LiDAR
    Sentinel -2
    ISSN
    2072-4292
    Revisión por pares
    SI
    DOI
    10.3390/rs15030710
    Patrocinador
    Ayudas Margarita Salas, European Union-Next GenerationEU - (grant MS-240621)
    Version del Editor
    https://www.mdpi.com/2072-4292/15/3/710
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/63408
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP08 - Artículos de revista [82]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Assessment-of-Oak-Groves-Conservation-Statuses.pdf
    Tamaño:
    1.359Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10