Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63850
Título
Optimal Bounds for Numerical Approximations of Infinite Horizon Problems Based on Dynamic Programming Approach
Año del Documento
2023-04-30
Editorial
SIAM
Descripción
Producción Científica
Documento Fuente
SIAM Journal on Control and Optimization, 61 (2023), 361-510
Resumen
In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach.
It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the
difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and
the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.
Materias (normalizadas)
Matemáticas
Análisis Numérico
Materias Unesco
1206 Análisis Numérico
1207.05 Programación Dinámica
Palabras Clave
Dynamic programming
Hamilton-Jacobi-Bellman equation
optimal control
error analysis
ISSN
0363-0129
Revisión por pares
SI
Patrocinador
Spanish MINECO, grant PID2019-104141GB-I00
Junta de Castilla y León, grant VA169P20 co-finanzed by FEDER (EU) funds
Junta de Castilla y León, grant VA169P20 co-finanzed by FEDER (EU) funds
Version del Editor
Propietario de los Derechos
Society for Industrial and Applied Mathematics
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem