Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64361
Título
Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces
Año del Documento
2021-03-01
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Computers & Mathematics with Applications, March 2021 vol. 85, p. 57-68.
Resumen
In the present work the optimal regularity, in the sense of Hölder continuity, of linear and semi-linear abstract fractional differential equations is investigated in the framework of complex Banach spaces. This framework has been considered by the authors as the most convenient to provide a posteriori error estimates for the time discretizations of such a kind of abstract differential equations. In the spirit of the classical a posteriori error estimates, under certain assumptions, the error is bounded in terms of computable quantities, in our case measured in the norm of Hölder continuous and weighted Hölder continuous functions.
Palabras Clave
A posteriori error estimates; Fractional differential equations; Nonlinear equations; Sectorial operators; Hölder continuity; Optimal regularity
ISSN
0898-1221
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad. RTI2018-094569-B100. Fog Research Institute under contract no. FRI-454.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional