Mostrar el registro sencillo del ítem

dc.contributor.authorCuesta Montero, Eduardo 
dc.contributor.authorPonce, Rodrigo
dc.date.accessioned2024-01-10T13:08:27Z
dc.date.available2024-01-10T13:08:27Z
dc.date.issued2022-10-26
dc.identifier.citationFractional Calculus and Applied Analysis, October 2022, vol. 25, pp. 2332–2355.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64373
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions \red{to} the \red{abstract} pseudo-parabolic equation $\partial_t^\alpha u(t) = A u(t) + B\partial_t^\beta u(t) + f(t),$ where $A,B$ are closed linear operators in a Banach space, and $\partial_t^\gamma u$ denotes the Caputo or Riemann--Liouville fractional derivative of order \red{$\gamma>0$.}es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherELSEVIERes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationFractional calculus (primary); Pseudo-parabolic equations; Evolution familieses
dc.titleAbstract fractional linear pseudo-parabolic equations in Banach spaces: well-posedness, regularity, and asymptotic behaviores
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1007/s13540-022-00103-6es
dc.identifier.publicationfirstpage2332es
dc.identifier.publicationlastpage2355es
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem