Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64373
Título
Abstract fractional linear pseudo-parabolic equations in Banach spaces: well-posedness, regularity, and asymptotic behavior
Año del Documento
2022
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Fractional Calculus and Applied Analysis, October 2022, vol. 25, pp. 2332–2355.
Resumo
In this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions \red{to} the \red{abstract} pseudo-parabolic equation $\partial_t^\alpha u(t) = A u(t) + B\partial_t^\beta u(t) + f(t),$ where $A,B$ are closed linear operators in a Banach space, and $\partial_t^\gamma u$ denotes the Caputo or Riemann--Liouville fractional derivative of order \red{$\gamma>0$.}
Palabras Clave
Fractional calculus (primary); Pseudo-parabolic equations; Evolution families
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
