Mostrar el registro sencillo del ítem

dc.contributor.authorBarrio Conde, Mikel
dc.contributor.authorZanella, Marco Antonio
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorRuiz González, Rubén 
dc.contributor.authorGómez Gil, Jaime 
dc.date.accessioned2024-01-21T21:38:12Z
dc.date.available2024-01-21T21:38:12Z
dc.date.issued2023
dc.identifier.citationSensors, Febrero 2023, vol. 23, n. 5. p. 2471es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64802
dc.descriptionProducción Científicaes
dc.description.abstractSunflower seeds, one of the main oilseeds produced around the world, are widely used in the food industry. Mixtures of seed varieties can occur throughout the supply chain. Intermediaries and the food industry need to identify the varieties to produce high-quality products. Considering that high oleic oilseed varieties are similar, a computer-based system to classify varieties could be useful to the food industry. The objective of our study is to examine the capacity of deep learning (DL) algorithms to classify sunflower seeds. An image acquisition system, with controlled lighting and a Nikon camera in a fixed position, was constructed to take photos of 6000 seeds of six sunflower seed varieties. Images were used to create datasets for training, validation, and testing of the system. A CNN AlexNet model was implemented to perform variety classification, specifically classifying from two to six varieties. The classification model reached an accuracy value of 100% for two classes and 89.5% for the six classes. These values can be considered acceptable, because the varieties classified are very similar, and they can hardly be classified with the naked eye. This result proves that DL algorithms can be useful for classifying high oleic sunflower seeds.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationClassification systemes
dc.subject.classificationConvolutional neural networkes
dc.subject.classificationHigh oleic sunflower seedes
dc.titleA Deep Learning Image System for Classifying High Oleic Sunflower Seed Varietieses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/s23052471es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/5/2471es
dc.identifier.publicationfirstpage2471es
dc.identifier.publicationissue5es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco31 Ciencias Agrariases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem