• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64802

    Título
    A Deep Learning Image System for Classifying High Oleic Sunflower Seed Varieties
    Autor
    Barrio Conde, Mikel
    Zanella, Marco Antonio
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Ruiz González, RubénAutoridad UVA
    Gómez Gil, JaimeAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, Febrero 2023, vol. 23, n. 5. p. 2471
    Zusammenfassung
    Sunflower seeds, one of the main oilseeds produced around the world, are widely used in the food industry. Mixtures of seed varieties can occur throughout the supply chain. Intermediaries and the food industry need to identify the varieties to produce high-quality products. Considering that high oleic oilseed varieties are similar, a computer-based system to classify varieties could be useful to the food industry. The objective of our study is to examine the capacity of deep learning (DL) algorithms to classify sunflower seeds. An image acquisition system, with controlled lighting and a Nikon camera in a fixed position, was constructed to take photos of 6000 seeds of six sunflower seed varieties. Images were used to create datasets for training, validation, and testing of the system. A CNN AlexNet model was implemented to perform variety classification, specifically classifying from two to six varieties. The classification model reached an accuracy value of 100% for two classes and 89.5% for the six classes. These values can be considered acceptable, because the varieties classified are very similar, and they can hardly be classified with the naked eye. This result proves that DL algorithms can be useful for classifying high oleic sunflower seeds.
    Materias Unesco
    33 Ciencias Tecnológicas
    31 Ciencias Agrarias
    Palabras Clave
    Classification system
    Convolutional neural network
    High oleic sunflower seed
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s23052471
    Version del Editor
    https://www.mdpi.com/1424-8220/23/5/2471
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64802
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    DeepLearningClassifyingHighOleicSunflowerSeedVarieties.pdf
    Tamaño:
    3.595Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10