Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64893
Título
Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques
Autor
Año del Documento
2015
Editorial
Elsevier
Documento Fuente
International Journal of Project Management, October 2015, 33 (7), 1597-1609
Resumen
The aim of this paper is to describe a new integrated methodology for project control under uncertainty. This proposal is based on Earned Value Methodology and risk analysis and presents several refinements to previous methodologies. More specifically, the approach uses extensive Monte Carlo simulation to obtain information about the expected behavior of the project. This dataset is exploited in several ways using different statistical learning methodologies in a structured fashion. Initially, simulations are used to detect if project deviations are a consequence of the expected variability using Anomaly Detection algorithms. If the project follows this expected variability, probabilities of success in cost and time and expected cost and total duration of the project can be estimated using classification and regression approaches.
Palabras Clave
Project Management; Earned Value Management; Project control; Monte Carlo simulation; Project risk management; Statistical learning; Anomaly Detection
ISSN
0263-7863
Revisión por pares
SI
Patrocinador
This research has been financed by the project “Computational Models for Strategic Project Portfolio Management”, supported by the Regional Government of Castile and Leon (Spain) with grant VA056A12-2 and by the Spanish Ministerio de Ciencia e Innovación project CSD2010-00034 (SimulPast CONSOLIDER-INGENIO 2010).
Version del Editor
Propietario de los Derechos
Copyright © 2015 Elsevier Ltd. All rights reserved.
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem