• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Organización de Empresas y Comercialización e Investigación de Mercados
    • DEP53 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Organización de Empresas y Comercialización e Investigación de Mercados
    • DEP53 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64893

    Título
    Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques
    Autor
    Acebes Senovilla, FernandoAutoridad UVA Orcid
    Pereda, María
    Poza Garcia, David JesúsAutoridad UVA Orcid
    Pajares Gutiérrez, JavierAutoridad UVA Orcid
    Galán Ordax, José Manuél
    Año del Documento
    2015
    Editorial
    Elsevier
    Documento Fuente
    International Journal of Project Management, October 2015, 33 (7), 1597-1609
    Resumo
    The aim of this paper is to describe a new integrated methodology for project control under uncertainty. This proposal is based on Earned Value Methodology and risk analysis and presents several refinements to previous methodologies. More specifically, the approach uses extensive Monte Carlo simulation to obtain information about the expected behavior of the project. This dataset is exploited in several ways using different statistical learning methodologies in a structured fashion. Initially, simulations are used to detect if project deviations are a consequence of the expected variability using Anomaly Detection algorithms. If the project follows this expected variability, probabilities of success in cost and time and expected cost and total duration of the project can be estimated using classification and regression approaches.
    Palabras Clave
    Project Management; Earned Value Management; Project control; Monte Carlo simulation; Project risk management; Statistical learning; Anomaly Detection
    ISSN
    0263-7863
    Revisión por pares
    SI
    DOI
    10.1016/j.ijproman.2015.06.012
    Patrocinador
    This research has been financed by the project “Computational Models for Strategic Project Portfolio Management”, supported by the Regional Government of Castile and Leon (Spain) with grant VA056A12-2 and by the Spanish Ministerio de Ciencia e Innovación project CSD2010-00034 (SimulPast CONSOLIDER-INGENIO 2010).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0263786315001106#ks0005
    Propietario de los Derechos
    Copyright © 2015 Elsevier Ltd. All rights reserved.
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/64893
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP53 - Artículos de revista [98]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    JPMA-D-15-00135R1-2.pdf
    Tamaño:
    1.112Mb
    Formato:
    Adobe PDF
    Descripción:
    Accepted Version
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10