• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65050

    Título
    Real-time reconciled simulation as decision support tool for process operation
    Autor
    Galán, Aníbal
    Prada Moraga, César deAutoridad UVA Orcid
    Gutiérrez Rodríguez, GloriaAutoridad UVA
    Sarabia, Daniel
    González, Rafael
    Año del Documento
    2021-03-18
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Process Control, Marzo 2020, vol. 100, p. 41-64
    Resumen
    Decision support tools in the process industry have been gaining relevance, especially for operation under uncertain conditions. This study describes real-time reconciled simulation (RTRS), and analyzes its usefulness as decision-making tool for process operators, especially under unexpected process changes. The proposed methodology is implemented in two case studies in the context of an oil refinery hydrogen network, where both plant and network levels are considered. A what-if analysis is conducted on two case studies, assessing two feasible mitigation actions for each case baseline condition. The focus of the discussion is, nevertheless, on the methodology itself and its general features as decision support tool. The relative error of RTRS for estimation of states and parameters, considering unmeasured disturbances, is satisfactory aligned with industrial standards for online measurements. In terms of mitigation actions, these are assessed with regards to its economic impact on the system in question. It is shown how actions at plant level may be disadvantageous when facing hydrogen demand changes, compared to network-wide mitigation actions. At plant level, it is pointed out the importance of purification units, prevailing over hydrogen make-up for mitigation of demand change. It is highlighted the fact that RTRS complements in a straightforward manner other control operation tools such as model predictive controllers (MPC) and real-time optimizers (RTO). Therefore, it may add to any decision support framework an open-loop component with parameter estimation and forecasting capabilities. Moreover, its potential for training and integration within other tools packages is discussed. Future directions of research are commented such as fully integrated decision support frameworks, including RTRS, MPC and RTO. Additionally, how RTRS may relate to digital twins, including an example of a suitable architecture is introduced, and RTRS role in enterprise-wide decision-making solutions is commented.
    Palabras Clave
    Real-time reconciled simulation
    Process change of condition
    Refinery hydrogen networks
    Operation decision support
    MHE
    ISSN
    0168-3659
    Revisión por pares
    SI
    DOI
    10.1016/j.jprocont.2021.02.003
    Patrocinador
    Este trabajo forma parte de los proyectos de investigación: Marie Curie Horizon 2020 EID-ITN project ‘‘PROcess NeTwork Optimization for efficient and sustainable operation of Europe’s process industries taking machinery condition and process performance into account – PRONTO’’, Grant agreement No 675215. This work was also supported by project PGC2018-099312-B-C31 (InCO4In) from AEI/FEDER, as well as the Regional Government of Castilla y León and the EU-FEDER (CLU 2017-09 and UIC 233).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0959152421000214
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65050
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1-s2.0-S0959152421000214-main.pdf
    Tamaño:
    5.718Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo Principal
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10