| dc.contributor.author | Martín Hernández, Verónica | |
| dc.contributor.author | Sanz Novo, Miguel | |
| dc.contributor.author | León Ona, Iker | |
| dc.contributor.author | Redondo Cristóbal, María del Pilar | |
| dc.contributor.author | Largo Cabrerizo, Antonio | |
| dc.contributor.author | Barrientos Benito, María Carmen | |
| dc.date.accessioned | 2024-01-30T08:22:58Z | |
| dc.date.available | 2024-01-30T08:22:58Z | |
| dc.date.issued | 2022 | |
| dc.identifier.citation | Journal of Physics: Condensed Matter, 2022, vol. 34, n. 29, 294005 | es |
| dc.identifier.issn | 0953-8984 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/65260 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Herein, we report a computational investigation of the binding affinity of dexamethasone,
betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease
using molecular and quantum mechanics as well as molecular docking methodologies. We aim
to provide information on the anti-COVID-19 mechanism of the abovementioned potential
drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2
main protease was selected as potential target site for the docking analysis. The study
includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and
hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried
out. In addition, global and local reactivity indexes have been calculated to predict the chemical
reactivity of these molecules. The molecular docking results indicate that dexamethasone
and betamethasone have a higher affinity than chloroquine and hydroxychloroquine
for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone
show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction
between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm
the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | IOP Publishing | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject.classification | molecular docking | es |
| dc.subject.classification | dexamethasone | es |
| dc.subject.classification | betamethasone | es |
| dc.subject.classification | chloroquine | es |
| dc.subject.classification | hydroxychloroquine | es |
| dc.subject.classification | SARS-CoV-2 main protease | es |
| dc.title | Computational study on the affinity of potential drugs to SARS-CoV-2 main protease | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2022 IOP Publishing Ltd | es |
| dc.identifier.doi | 10.1088/1361-648X/ac6c6c | es |
| dc.relation.publisherversion | https://iopscience.iop.org/article/10.1088/1361-648X/ac6c6c | es |
| dc.identifier.publicationfirstpage | 294005 | es |
| dc.identifier.publicationissue | 29 | es |
| dc.identifier.publicationtitle | Journal of Physics: Condensed Matter | es |
| dc.identifier.publicationvolume | 34 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Ministerio de Ciencia e Innovación (MICIN) / Agencia Estatal de Investigación (AEI): PID2019-111396GB-I00 y PID2020-117742GB-I00 (MICIN/AEI/10.13039/501100011033) | |
| dc.description.project | Junta de Castilla y León: VA244P20 | |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades (MICIU): contrato predoctoral FPU de Miguel Sanz Novo (FPU17/02987) | |
| dc.identifier.essn | 1361-648X | es |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |