Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65260
Título
Computational study on the affinity of potential drugs to SARS-CoV-2 main protease
Autor
Año del Documento
2022
Editorial
IOP Publishing
Descripción
Producción Científica
Documento Fuente
Journal of Physics: Condensed Matter, Volume 34, Number 29
Resumen
Herein, we report a computational investigation of the binding affinity of dexamethasone,
betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease
using molecular and quantum mechanics as well as molecular docking methodologies. We aim
to provide information on the anti-COVID-19 mechanism of the abovementioned potential
drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2
main protease was selected as potential target site for the docking analysis. The study
includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and
hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried
out. In addition, global and local reactivity indexes have been calculated to predict the chemical
reactivity of these molecules. The molecular docking results indicate that dexamethasone
and betamethasone have a higher affinity than chloroquine and hydroxychloroquine
for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone
show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction
between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm
the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity.
Palabras Clave
molecular docking
dexamethasone
betamethasone
chloroquine
hydroxychloroquine
SARS-CoV-2 main protease
ISSN
0953-8984
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2022 IOP Publishing Ltd
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional