Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65617
Título
Why Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?
Autor
Año del Documento
2021
Editorial
MDPI
Documento Fuente
Mathematics Abril 2021, 9(9), 1008
Resumo
In previous papers, a technique has been suggested to avoid order reduction when inte-
grating initial boundary value problems with several kinds of exponential methods. The technique
implies in principle to calculate additional terms at each step from those already necessary without
avoiding order reduction. The aim of the present paper is to explain the surprising result that,
many times, in spite of having to calculate more terms at each step, the computational cost of doing
it through Krylov methods decreases instead of increases. This is very interesting since, in that way,
the methods improve not only in terms of accuracy, but also in terms of computational cost.
Revisión por pares
SI
Patrocinador
Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación and Regional Development European Funds a través del proyecto PGC2018-101443-B-I00 y por Junta de Castilla y León y Feder a través del proyecto VA169P20
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item