• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65657

    Título
    Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates
    Autor
    Diez, Francisco Javier
    Navas Gracia, Luis ManuelAutoridad UVA
    Martínez Rodríguez, AndrésAutoridad UVA Orcid
    Correa Guimaraes, AdrianaAutoridad UVA
    Chico Santamarta, Leticia
    Año del Documento
    2019-08
    Editorial
    Elsevier BV
    Descripción
    Producción Científica
    Documento Fuente
    Solar Energy, agosto 2019, vol. 188, p. 1320-1331
    Resumen
    The operation of a flat-plate solar collector using three different working fluid flows (water, i.e. 1, 1.6, 2 L/min) has been modelled using the artificial neural networks (ANNs) of computational intelligence technique. The ANNs model has been built at the entrance to predict the outlet temperature in the flat-plate solar collector using measured data of solar irradiance, ambient temperature, inlet temperature and working fluid flow. The results obtained conclude the method is accurate with the three flow rates of the working fluid (water) (e.g. RMSE = 0.1781 °C and R2 = 0.9991 for an ANN prediction of the outlet temperature of the working fluid with 2 L/min test and RMSE = 0.0090 [0,1] and R2 = 0.7443 as a performance prediction test of 1 L/min), flexible when choosing the variables used and easy to apply to any solar collector. The Hottel-Whillier-Bliss (HWB) and the international standard ISO 9806 solar collector models are also described and applied using the data obtained in the tests performed on the flat-plate solar collector. The deviation that occurs with the three different flows of the working fluid (water) used, have been verified and also their repercussion when they are applied in the f-chart method.
    ISSN
    0038-092X
    Revisión por pares
    SI
    DOI
    10.1016/j.solener.2019.07.022
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0038092X19306863
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/65657
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    embargoedAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Articulo5.pdfEmbargado hasta: 2099-12-31
    Tamaño:
    2.814Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10