• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65682

    Título
    Quantification of graph complexity based on the edge weight distribution balance: Application to brain networks
    Autor
    Gómez Pilar, JavierAutoridad UVA Orcid
    Poza Crespo, JesúsAutoridad UVA Orcid
    Bachiller Matarranz, AlejandroAutoridad UVA
    Gómez Peña, CarlosAutoridad UVA Orcid
    Núñez Novo, PabloAutoridad UVA
    Lubeiro Juarez, AlbaAutoridad UVA Orcid
    Molina Rodríguez, VicenteAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2018
    Editorial
    World Scientific Publishing Company
    Documento Fuente
    International Journal of Neural Systems, Febrero, 2018, vol. 28 (1), pp. 1750032
    Résumé
    The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the ‘information’ (calculated by means of Shannon entropy) and the ‘order’ of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size (N) is close to zero for N>30. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.
    Materias (normalizadas)
    Artificial intelligence
    Computer science
    Palabras Clave
    Graph theory
    Brain networks
    Brain complexity
    Entropy
    Revisión por pares
    SI
    DOI
    10.1142/S0129065717500320
    Patrocinador
    TEC2014-53196-R, FIS PI11/02203, PI15/00299, GRS 932/A/14 y GRS 1134/A/15
    Version del Editor
    https://doi.org/10.1142/S0129065717500320
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/65682
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    GomezPilar_IJNS2018_UVADOC.pdf
    Tamaño:
    1.088Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10