• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65739

    Título
    Cross validation voting for improving CNN classification in grocery products
    Autor
    Duque Domingo, JaimeAutoridad UVA Orcid
    Medina Aparicio, Roberto
    González Rodrigo, Luis Miguel
    Año del Documento
    2022-02-08
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Access, Febrero 2022, vol. 10, p. 20913-20925
    Resumen
    The development of deep neural networks that has been carried out in recent years allows solving highly complex computer vision classification problems. Often, although the results obtained with these classifiers are high, there are certain sectors that seek greater accuracy from these systems. Increasing the accuracy of neural networks can be achieved through ensemble learning, which combines different classifiers with the aim of selecting a winner based on different criteria about them. These techniques have traditionally shown good results although they involve training models of different nature and can even produce an overfitting with respect to the training data, so datasets must be chosen to correctly evaluate the result. In this paper, a Cross-Validation-Voting (CVV) technique for grocery product classification is presented. This technique improves several single state-of-the-art classifiers without combining different ones and avoids the problems of overfitting with respect to the training set. The single classifiers are trained multiple times against distributed sets to show how the results obtained to date from the classification of a well-known dataset are improved. In this dataset, an extensive test set was previously selected by the authors to show comparable results with other papers in the literature. The technique is valid not only for vision nets and can be used to solve numerous problems with different kinds of neural networks and classifiers.
    Materias (normalizadas)
    Artificial intelligence
    Materias Unesco
    Artificial intelligence
    Palabras Clave
    Cross-validation-voting, CVV, voting, boosting, ResNeXt, EfficientNet, Wide ResNet, CNN, grocery image classification.
    ISSN
    2169-3536
    Revisión por pares
    SI
    DOI
    10.1109/ACCESS.2022.3152224
    Patrocinador
    This work was supported in part by ‘‘The Centre for the Development of Industrial Technology (CDTI)’’, under the ‘‘Centros Tecnológicos de Excelencia Cervera’’ Program, through the Project ‘‘5R-Cervera Network in Robotic Technologies for Smart Manufacturing’’, under Contract CER-20211007; and in part by the ‘‘Fondo Europeo de Desarrollo Regional (FEDER)’’ of the European Union and the ‘‘Junta de Castilla y León’’ through the ‘‘Instituto para la Competitividad Empresarial de Castilla y León (ICE)’’ through the line ‘‘2020 Proyectos I+D Orientados a la Excelencia y Mejora Competitiva de los Centros Tecnológicos’’, under Project CCTT3/20/VA/0003.
    Version del Editor
    https://ieeexplore.ieee.org/document/9715066
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65739
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Cross_Validation_Voting_for_Improving_CNN_Classification_in_Grocery_Products.pdf
    Tamaño:
    2.601Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10