• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65873

    Título
    Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
    Autor
    Menchon Lara, Rosa MaríaAutoridad UVA
    Sancho Gómez, José Luis
    Año del Documento
    2015
    Documento Fuente
    Neurocomputing, Volume 151, Part 1, 2015, Pages 161-167.
    Resumen
    Atherosclerosis is responsible for a large proportion of cardiovascular diseases (CVD), which are the leading cause of death in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. It causes thickening and the reduction of elasticity in the blood vessels. An early diagnosis of this condition is crucial to prevent patients from suffering more serious pathologies (heart attacks and strokes). The evaluation of the Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) in B-mode ultrasound images is considered the most useful tool for the investigation of preclinical atherosclerosis. Usually, it is manually measured by the radiologists. This paper proposes a fully automatic segmentation technique based on Machine Learning and Statistical Pattern Recognition to measure IMT from ultrasound CCA images. The pixels are classified by means of artificial neural networks to identify the IMT boundaries. Moreover, the concepts of Auto-Encoders (AE) and Deep Learning have been included in the classification strategy. The suggested approach is tested on a set of 55 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings.
    ISSN
    0925-2312
    Revisión por pares
    SI
    DOI
    10.1016/j.neucom.2014.09.066
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65873
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1-s2.0-S0925231214013034-main.pdf
    Tamaño:
    1.703Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10