Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66062
Título
On the use of neural networks for the structural characterization of polymeric porous materials
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Polymer, 2024, vol. 291, 126597
Resumen
The structural characterization is an essential task in the study of porous materials. To achieve reliable results, it requires to evaluate images with hundreds of pores. Current methods require large time amounts and are subjected to human errors and subjectivity. A completely automatic tool would not only speed up the process but also enhance its reliability and reproducibility. Therefore, the main objective of this article is the study of a deep-learning-based technique for the structural characterization of porous materials, through the use of a convolutional neural network. Several fine-tuned Mask R–CNN models are evaluated using different training configurations in four separate datasets each composed of numerous SEM images of diverse polymeric porous materials: closed-pore extruded polystyrene (XPS), polyurethane (PU), and poly(methyl methacrylate) (PMMA), and open-pore PU. Results prove the tool capable of providing very accurate results, equivalent to those achieved by time-consuming manual methods, in a matter of seconds.
Materias (normalizadas)
Polimeros y polimerización
Materias Unesco
2301.15 Análisis de Polímeros
Palabras Clave
Deep learning
Mask R–CNN
Automatic
Aprendizaje profundo
Automático
Máscara R-CNN
ISSN
0032-3861
Revisión por pares
SI
Patrocinador
MCIN/AEI/10.13039/501100011033 and the EU NextGenerationEU/PRTR program (PLEC2021-007705)
Junta de Castilla y León y el programa EU-FEDER (CLU-2019-04)
Junta de Castilla y León y el programa EU-FEDER (CLU-2019-04)
Propietario de los Derechos
© 2024 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional