Mostrar el registro sencillo del ítem
dc.contributor.author | Milo, V. | |
dc.contributor.author | Anzalone, F. | |
dc.contributor.author | Zambelli, C. | |
dc.contributor.author | Pérez, E. | |
dc.contributor.author | Mahadevaiah, M.K. | |
dc.contributor.author | González Ossorio, Óscar | |
dc.contributor.author | Olivo, P. | |
dc.contributor.author | Wenger, Christian | |
dc.contributor.author | Ielmini, D. | |
dc.date.accessioned | 2024-02-09T09:20:35Z | |
dc.date.available | 2024-02-09T09:20:35Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, p. 1-6 | es |
dc.identifier.isbn | 978-1-7281-6893-7 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66068 | |
dc.description | Producción Científica | es |
dc.description.abstract | A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition. | es |
dc.format.extent | 6 | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Institute of Electrical and Electronics Engineers | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Resistive-switching random access memory (RRAM) | es |
dc.subject.classification | Multilevel programming | es |
dc.subject.classification | Resistance variability | es |
dc.subject.classification | Weight quantization | es |
dc.subject.classification | Hardware neural networks | es |
dc.subject.classification | In-memory computing | es |
dc.title | Optimized programming algorithms for multilevel RRAM in hardware neural networks | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.identifier.doi | 10.1109/IRPS46558.2021.9405119 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9405119 | es |
dc.title.event | 2021 IEEE International Reliability Physics Symposium (IRPS) | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |