• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66068

    Título
    Optimized programming algorithms for multilevel RRAM in hardware neural networks
    Autor
    Milo, V.
    Anzalone, F.
    Zambelli, C.
    Pérez, E.
    Mahadevaiah, M.K.
    González Ossorio, ÓscarAutoridad UVA
    Olivo, P.
    Wenger, Christian
    Ielmini, D.
    Congreso
    2021 IEEE International Reliability Physics Symposium (IRPS)
    Año del Documento
    2021
    Editorial
    Institute of Electrical and Electronics Engineers
    Descripción Física
    6
    Descripción
    Producción Científica
    Documento Fuente
    2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, p. 1-6
    Abstract
    A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition.
    Palabras Clave
    Resistive-switching random access memory (RRAM)
    Multilevel programming
    Resistance variability
    Weight quantization
    Hardware neural networks
    In-memory computing
    ISBN
    978-1-7281-6893-7
    DOI
    10.1109/IRPS46558.2021.9405119
    Version del Editor
    https://ieeexplore.ieee.org/document/9405119
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66068
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Comunicaciones a congresos, conferencias, etc. [12]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Optimized_programming_algorithms_for_multilevel_RRAM_in_hardware_neural_networks.pdf
    Tamaño:
    2.782Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10