Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66123
Título
Ensemble-learning regression to estimate sleep apnea severity using at-home oximetry in adults
Autor
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Applied Soft Computing, noviembre, 2021, vol. 111, pp. 107827
Resumen
Overnight pulse oximetry has shown usefulness to simplify obstructive sleep apnea (OSA) diagnosis when combined with machine-learning approaches. However, the development and evaluation of a single model with ability to reach high diagnostic performance in both community-based non-referral and clinical referral cohorts are still pending. Since ensemble-learning algorithms are known for their generalization ability, we propose a least-squares boosting (LSBoost) model aimed at estimating the apnea–hypopneaindex (AHI), as the correlate clinical measure of disease severity. A thorough characterization of 8,762 nocturnal blood-oxygen saturation signals (SpO 2) obtained at home was conducted to extract the oximetric information subsequently used in the training, validation, and test stages. The estimated AHI derived from our model achieved high diagnostic ability in both referral and non-referral cohorts reaching intra-class correlation coefficients within 0.889–0.924, and Cohen’s
within 0.478–0.663 when considering the four OSA severity categories. These resulted in accuracies ranging 87.2%–96.6%, 81.1%–87.6%, and 91.6%–94.6% when assessing the three typical AHI severity thresholds, 5 events/hour (e/h), 15 e/h, and 30 e/h, respectively. Our model also revealed the importance of the SpO 2 predictors, thereby minimizing the ‘black box’ perception traditionally attributed to the machine-learning approaches. Furthermore, a decision curve analysis emphasized the clinical usefulness of our proposal. Therefore, we conclude that the LSBoost-based model can foster development of clinically applicable and cost saving protocols for detection of patients attending primary care services, or to avoid full polysomnography in specialized sleep facilities, thus demonstrating the diagnostic usefulness of SpO 2 signals obtained at home.
Revisión por pares
SI
Patrocinador
This work was supported by ‘Ministerio de Ciencia, Innovación y Universidades’ and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R and RTC-2017- 6516-1, by Sociedad Española de Neumología y Cirugía Torácica (SEPAR) under project 649/2018, Sociedad Española de Sueño (SES) under project ‘‘Beca de Investigación SES 2019’’, by ‘European Commission’ and ‘FEDER’ under projects ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ and ‘Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo de migraña crónica y episódica en mujeres’ (‘Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020’), and by ‘CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)’ through ‘Instituto de Salud Carlos III’ co-funded with FEDER funds. D. Álvarez is supported by a ‘‘Ramón y Cajal’’ grant (RYC2019-028566-I) from the ‘Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación’ co-funded by the European Social Fund. Vaquerizo-Villar was in receipt of a ‘‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’’ grant from the ‘‘Ministerio de Educación, Cultura y Deporte’’ (FPU16/02938). Funders had no role in the design of the study, nor in the collection, analysis, or interpretation of data, nor in manuscript preparation. LKG and DG are supported in part by National Institutes of Health grants HL130984 and HL140548 and a University of Missouri Tier 2 grant.
Version del Editor
Propietario de los Derechos
ELSEVIER
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem