• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66130

    Título
    Reliability of Machine Learning to diagnose pediatric obstructive sleep apnea: systematic review and meta-analysis
    Autor
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Kheirandish Gozal, Leila
    Campo Matias, Félix delAutoridad UVA Orcid
    Gozal, David
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Wiley
    Documento Fuente
    Pediatric Pulmonology, Agosto 2022, vol. 57, n 8, p 1931-1943
    Resumen
    Background Machine-learning approaches have enabled promising results in efforts to simplify the diagnosis of pediatric obstructive sleep apnea (OSA). A comprehensive review and analysis of such studies increase the confidence level of practitioners and healthcare providers in the implementation of these methodologies in clinical practice. Objective To assess the reliability of machine-learning-based methods to detect pediatric OSA. Data Sources Two researchers conducted an electronic search on the Web of Science and Scopus using term, and studies were reviewed along with their bibliographic references. Eligibility Criteria Articles or reviews (Year 2000 onwards) that applied machine learning to detect pediatric OSA; reported data included information enabling derivation of true positive, false negative, true negative, and false positive cases; polysomnography served as diagnostic standard. Appraisal and Synthesis Methods Pooled sensitivities and specificities were computed for three apnea-hypopnea index (AHI) thresholds: 1 event/hour (e/h), 5 e/h, and 10 e/h. Random-effect models were assumed. Summary receiver-operating characteristics (SROC) analyses were also conducted. Heterogeneity (I 2) was evaluated, and publication bias was corrected (trim and fill). Results Nineteen studies were finally retained, involving 4767 different pediatric sleep studies. Machine learning improved diagnostic performance as OSA severity criteria increased reaching optimal values for AHI = 10 e/h (0.652 sensitivity; 0.931 specificity; and 0.940 area under the SROC curve). Publication bias correction had minor effect on summary statistics, but high heterogeneity was observed among the studies.
    Revisión por pares
    SI
    DOI
    10.1002/ppul.25423
    Patrocinador
    Sociedad Española de Neumología y Cirugía Torácica. Grant Number: 649/2018 Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina Ministerio de Ciencia, Innovación y Universidades. Grant Numbers: D. Álvarez is supported by a "Ramón y Cajal" gra, DPI2017-84280-R, RTC-2017-6516-1 Sociedad Española de Sueño. Grant Number: Beca de Investigación SES 2019 University of Missouri. Grant Number: Tier 2 Children's Miracle Network Endowed Professorship Leda J. Sears Foundation European Regional Development Fund. Grant Numbers: Cooperation Programme Interreg V-A Spain-Portugal, DPI2017-84280-R, RTC-2017-6516-1 National Institutes of Health. Grant Numbers: AG061824, HL130984, HL140548
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/ppul.25423
    Propietario de los Derechos
    Wiley
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66130
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Gutierrez_Tobal_PPULM_21_0148_R2 marked.pdf
    Tamaño:
    207.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10