Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66738
Título
3DWS: reliable segmentation on intelligent welding systems with 3D convolutions
Autor
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Journal of Intelligent Manufacturing, 2023.
Abstract
Automated industrial welding processes depend on a large number of factors interacting with high complexity resulting in some sporadic and random variability of the manufactured product that may affect its quality. It is therefore very important to have an accurate and stable quality control. In this work, a deep learning (DL) model is developed for semantic segmentation of weld seams using 3D stereo images of the seam. The objective is to correctly identify the shape and volume of the weld seam as this is the basic problem of quality control. To achieve this, a model called UNet++ has been developed, based on the UNet and UNet++ architectures, with a more complex topology and a simple encoder to achieve a good adaptation to the specific characteristics of the 3D data. The proposed model receives as input a voxelized 3D point cloud of the freshly welded part where noise is abundantly visible, and generates as output another 3D voxel grid where each voxel is semantically labeled. The experiments performed with parts built by a real weld line show a correct identification of the weld seams, obtaining values between 0.935 and 0.941 for the Dice Similarity Coefficient (DSC). As far as the authors are aware, this is the first 3D analysis proposal capable of generating shape and volume information of weld seams with almost perfect noise filtering.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Automated manufacturing
Deep learning
3D convolutions
Semantic segmentation
Industry 4.0
ISSN
0956-5515
Revisión por pares
SI
Patrocinador
Junta de Castilla y León y FEDER (programa “Subvenciones para la realización de proyectos de I+D+i en el ámbito de Castilla y León cofinanciados con FEDER” bajo Convenio de Donación No. FUNGE 061-217731)
Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
Version del Editor
Propietario de los Derechos
© 2023 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Tamaño:
1.612Mb
Formato:
Adobe PDF
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional