Mostrar el registro sencillo del ítem

dc.contributor.authorTomatis, Francisco
dc.contributor.authorDiez, Francisco Javier
dc.contributor.authorWilhelm, Maria Sol
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.date.accessioned2024-04-19T08:08:16Z
dc.date.available2024-04-19T08:08:16Z
dc.date.issued2023
dc.identifier.citationAgronomy, 2024, Vol. 14, Nº. 1, 60es
dc.identifier.issn2073-4395es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67222
dc.descriptionProducción Científicaes
dc.description.abstractUrban green spaces improve quality of life by mitigating urban temperatures. However, there are challenges in obtaining urban data to analyze and understand their influence. With the aim of developing innovative methodologies for this type of research, Artificial Neural Networks (ANNs) were developed to predict daily and hourly temperatures in urban green spaces from sensors placed in situ for 41 days. The study areas were four urban allotment gardens (with dynamic and productive vegetation) and a forested urban park in the city of Valladolid, Spain. ANNs were built and evaluated from various combinations of inputs (X), hidden neurons (Y), and outputs (Z) under the practical rule of “making networks simple, to obtain better results”. Seven ANNs architectures were tested: 7-Y-5 (Y = 6, 7, …, 14), 6-Y-5 (Y = 6, 7, …, 14), 7-Y-1 (Y = 2, 3, …, 8), 6-Y-1 (Y = 2, 3, …, 8), 4-Y-1 (Y = 1, 2, …, 7), 3-Y-1 (Y = 1, 2, …, 7), and 2-Y-1 (Y = 2, 3, …, 8). The best-performing model was the 6-Y-1 ANN architecture with a Root Mean Square Error (RMSE) of 0.42 °C for the urban garden called Valle de Arán. The results demonstrated that from shorter data points obtained in situ, ANNs predictions achieve acceptable results and reflect the usefulness of the methodology. These predictions were more accurate in urban gardens than in urban parks, where the type of existing vegetation can be a decisive factor. This study can contribute to the development of a sustainable and smart city, and has the potential to be replicated in cities where the influence of urban green spaces on urban temperatures is studied with traditional methodologies.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectUrban climatologyes
dc.subjectGardenses
dc.subjectTemperaturees
dc.subjectUrban parkses
dc.subjectParques - España - Valladolides
dc.subjectJardines - España - Valladolides
dc.subjectCity planning - Environmental aspectses
dc.subjectLandscape architecturees
dc.subjectArquitectura del paisajees
dc.subjectUrban green spaceses
dc.subjectUrban Ecologyes
dc.subjectSustainable urban developmentes
dc.subjectCity planning - Climatic factorses
dc.subjectClimate change mitigationes
dc.subjectClima - Cambios - Aspecto del medio ambientees
dc.subjectArtificial intelligencees
dc.subjectRedes neuronales (Informática)es
dc.titlePrediction of daily ambient temperature and Its hourly estimation using artificial neural networks in urban allotment gardens and an urban park in Valladolid, Castilla y León, Spaines
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/agronomy14010060es
dc.relation.publisherversionhttps://www.mdpi.com/2073-4395/14/1/60es
dc.identifier.publicationfirstpage60es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleAgronomyes
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectUnión Europea - FUSILLI project (H2020-FNR-2020-1/CE-FNR-07-2020)es
dc.description.projectUnión Europea - CIRAWA project (HORIZON-CL6- 2022-FARM2FORK-01)es
dc.identifier.essn2073-4395es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco6201.03 Urbanismoes
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.17 Informáticaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem