• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67222

    Título
    Prediction of daily ambient temperature and Its hourly estimation using artificial neural networks in urban allotment gardens and an urban park in Valladolid, Castilla y León, Spain
    Autor
    Tomatis, FranciscoAutoridad UVA
    Diez, Francisco Javier
    Wilhelm, Maria Sol
    Navas Gracia, Luis ManuelAutoridad UVA
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Agronomy, 2024, Vol. 14, Nº. 1, 60
    Resumo
    Urban green spaces improve quality of life by mitigating urban temperatures. However, there are challenges in obtaining urban data to analyze and understand their influence. With the aim of developing innovative methodologies for this type of research, Artificial Neural Networks (ANNs) were developed to predict daily and hourly temperatures in urban green spaces from sensors placed in situ for 41 days. The study areas were four urban allotment gardens (with dynamic and productive vegetation) and a forested urban park in the city of Valladolid, Spain. ANNs were built and evaluated from various combinations of inputs (X), hidden neurons (Y), and outputs (Z) under the practical rule of “making networks simple, to obtain better results”. Seven ANNs architectures were tested: 7-Y-5 (Y = 6, 7, …, 14), 6-Y-5 (Y = 6, 7, …, 14), 7-Y-1 (Y = 2, 3, …, 8), 6-Y-1 (Y = 2, 3, …, 8), 4-Y-1 (Y = 1, 2, …, 7), 3-Y-1 (Y = 1, 2, …, 7), and 2-Y-1 (Y = 2, 3, …, 8). The best-performing model was the 6-Y-1 ANN architecture with a Root Mean Square Error (RMSE) of 0.42 °C for the urban garden called Valle de Arán. The results demonstrated that from shorter data points obtained in situ, ANNs predictions achieve acceptable results and reflect the usefulness of the methodology. These predictions were more accurate in urban gardens than in urban parks, where the type of existing vegetation can be a decisive factor. This study can contribute to the development of a sustainable and smart city, and has the potential to be replicated in cities where the influence of urban green spaces on urban temperatures is studied with traditional methodologies.
    Materias (normalizadas)
    Urban climatology
    Gardens
    Temperature
    Urban parks
    Parques - España - Valladolid
    Jardines - España - Valladolid
    City planning - Environmental aspects
    Landscape architecture
    Arquitectura del paisaje
    Urban green spaces
    Urban Ecology
    Sustainable urban development
    City planning - Climatic factors
    Climate change mitigation
    Clima - Cambios - Aspecto del medio ambiente
    Artificial intelligence
    Redes neuronales (Informática)
    Materias Unesco
    6201.03 Urbanismo
    1203.04 Inteligencia Artificial
    1203.17 Informática
    ISSN
    2073-4395
    Revisión por pares
    SI
    DOI
    10.3390/agronomy14010060
    Patrocinador
    Unión Europea - FUSILLI project (H2020-FNR-2020-1/CE-FNR-07-2020)
    Unión Europea - CIRAWA project (HORIZON-CL6- 2022-FARM2FORK-01)
    Version del Editor
    https://www.mdpi.com/2073-4395/14/1/60
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/67222
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Prediction-of-Daily-Ambient-Temperatur.pdf
    Tamaño:
    2.810Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Itens relacionados

    Apresentado os itens relacionados pelo título, autor e assunto.

    • Thumbnail

      Urban sustainability deficits: The urban non-sustainability index (UNSI) as a tool for urban policy 

      Raedo Santos, RubénAutoridad UVA (2021)
    • Thumbnail

      The transformation of the public urban environment in Milan – From green corridors to tactical urbanism 

      Balzarotti, Riccardo Maria; Camerin, FedericoAutoridad UVA; Fabris, Luca Maria Francesco; Semprebon, Gerardo (2023)
    • Thumbnail

      From “Ribera Plan” to “Diagonal Mar”, passing through 1992 “Vila Olímpica”. How urban renewal took place as urban regeneration in Poblenou district (Barcelona) 

      Camerin, FedericoAutoridad UVA (2019)

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10