• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67988

    Título
    Multi-rate vibration signal analysis for bearing fault detection in induction machines using supervised learning classifiers
    Autor
    El Bouharrouti, Nada
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Belahcen, Anouar
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Machines, 2023, Vol. 12, Nº. 1, 17
    Resumo
    Vibration signals carry important information about the health state of a ball bearing and have proven their efficiency in training machine learning models for fault diagnosis. However, the sampling rate and frequency resolution of these acquired signals play a key role in the detection analysis. Industrial organizations often seek cost-effective and qualitative measurements, while reducing sensor resolution to optimize their resource allocation. This paper compares the performance of supervised learning classifiers for the fault detection of bearing faults in induction machines using vibration signals sampled at various frequencies. Three classes of algorithms are tested: linear models, tree-based models, and neural networks. These algorithms are trained and evaluated on vibration data collected experimentally and then downsampled to various intermediate levels of sampling, from 48 kHz to 1 kHz, using a fractional downsampling method. The study highlights the trade-off between fault detection accuracy and sampling frequency. It shows that, depending on the machine learning algorithm used, better training accuracies are not systematically achieved when training with vibration signals sampled at a relatively high frequency.
    Materias (normalizadas)
    Machinery - Monitoring
    Sistema de Monitoreo
    Sampling (Statistics)
    Mechanical engineering
    Electrical engineering
    Machine learning
    Aprendizaje automático
    Vibration
    Materias Unesco
    1209.10 Teoría y Técnicas de Muestreo
    3313 Tecnología E Ingeniería Mecánicas
    3306 Ingeniería y Tecnología Eléctricas
    2201.11 Vibraciones
    ISSN
    2075-1702
    Revisión por pares
    SI
    DOI
    10.3390/machines12010017
    Patrocinador
    Consejo de Investigación de Finlandia - ( grants 346438 and 330747)
    Version del Editor
    https://www.mdpi.com/2075-1702/12/1/17
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/67988
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP45 - Artículos de revista [47]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Multi-rate-Vibration-Signal-Analysis.pdf
    Tamaño:
    1.256Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10