Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68101
Título
A self-adaptive automatic incident detection system for road surveillance based on deep learning
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2024, Vol. 24, Nº. 6, 1822
Resumen
We present an automatic road incident detector characterised by a low computational complexity for easy implementation in affordable devices, automatic adaptability to changes in scenery and road conditions, and automatic detection of the most common incidents (vehicles with abnormal speed, pedestrians or objects falling on the road, vehicles stopped on the shoulder, and detection of kamikaze vehicles). To achieve these goals, different tasks have been addressed: lane segmentation, identification of traffic directions, and elimination of unnecessary objects in the foreground. The proposed system has been tested on a collection of videos recorded in real scenarios with real traffic, including areas with different lighting. Self-adaptability (plug and play) to different scenarios has been tested using videos with significant scene changes. The achieved system can process a minimum of 80 video frames within the camera’s field of view, covering a distance of 400 m, all within a span of 12 s. This capability ensures that vehicles travelling at speeds of 120 km/h are seamlessly detected with more than enough margin. Additionally, our analysis has revealed a substantial improvement in incident detection with respect to previous approaches. Specifically, an increase in accuracy of 2–5% in automatic mode and 2–7% in semi-automatic mode. The proposed classifier module only needs 2.3 MBytes of GPU to carry out the inference, thus allowing implementation in low-cost devices.
Materias (normalizadas)
Security
Systems and Data Security
Artificial intelligence
Traffic safety
Seguridad en carretera
Automobiles - Safety appliances
Seguridad vial
Tráfico, Ingeniería del - Informática
Highway communications
Machine learning
Aprendizaje automático
Self-adaptive software
Video surveillance
Video
Artificial intelligence
Materias Unesco
1203.04 Inteligencia Artificial
1203.25 Diseño de Sistemas Sensores
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Junta de Castilla y León, Instituto de Competitividad Empresarial y Fondo Europeo de Desarrollo Regional (FEDER) - (grants 04/18/VA/0008, 04/18/VA/0013, 04/20/VA/0130)
European Union’s Horizon 2020 and Innovation Program Marie Skłodowska-Curie - (Grant 101008297)
European Union’s Horizon 2020 and Innovation Program Marie Skłodowska-Curie - (Grant 101008297)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional