dc.contributor.author | García Navarrete, Óscar Leonardo | |
dc.contributor.author | Correa Guimaraes, Adriana | |
dc.contributor.author | Navas Gracia, Luis Manuel | |
dc.date.accessioned | 2024-06-17T08:08:54Z | |
dc.date.available | 2024-06-17T08:08:54Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Agriculture, 2024, Vol. 14, Nº. 4, 568 | es |
dc.identifier.issn | 2077-0472 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68120 | |
dc.description | Producción Científica | es |
dc.description.abstract | Weeds are unwanted and invasive plants that proliferate and compete for resources such as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops. Weed detection is crucial for the application of precision agriculture methods and for this purpose machine learning techniques can be used, specifically convolutional neural networks (CNN). This study focuses on the search for CNN architectures used to detect and identify weeds in different crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023). The results show the used of different devices to acquire the images for training, such as digital cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point for researchers wishing to implement these weed detection and identification techniques | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Precision agriculture | es |
dc.subject | Agricultural innovations | es |
dc.subject | Agricultura - Innovaciones tecnológicas | es |
dc.subject | Weeds | es |
dc.subject | Malas hierbas | es |
dc.subject | Weeds - Control | es |
dc.subject | Control de malezas | es |
dc.subject | Artificial intelligence -- Agricultural applications | es |
dc.subject | Machine learning | es |
dc.subject | Aprendizaje automático | es |
dc.subject | Computer vision | es |
dc.subject | Visión artificial (Robótica) | es |
dc.subject | Image processing | es |
dc.subject | Imágenes, Tratamiento de las | es |
dc.subject | Neural networks (Computer science) | es |
dc.subject | Redes neuronales (Informática) | es |
dc.subject | Sustainable agriculture | es |
dc.subject | Agricultura sostenible | es |
dc.title | Application of convolutional neural networks in weed detection and identification: a systematic review | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The authors | es |
dc.identifier.doi | 10.3390/agriculture14040568 | es |
dc.relation.publisherversion | https://www.mdpi.com/2077-0472/14/4/568 | es |
dc.identifier.publicationfirstpage | 568 | es |
dc.identifier.publicationissue | 4 | es |
dc.identifier.publicationtitle | Agriculture | es |
dc.identifier.publicationvolume | 14 | es |
dc.peerreviewed | SI | es |
dc.description.project | Union Europea, Programa Horizonte - (project HORIZON-CL6-2022-FARM2FORK-01) | es |
dc.identifier.essn | 2077-0472 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3102 Ingeniería Agrícola | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 1203.17 Informática | es |