Show simple item record

dc.contributor.authorGarcía Navarrete, Óscar Leonardo 
dc.contributor.authorCorrea Guimaraes, Adriana 
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.date.accessioned2024-06-17T08:08:54Z
dc.date.available2024-06-17T08:08:54Z
dc.date.issued2024
dc.identifier.citationAgriculture, 2024, Vol. 14, Nº. 4, 568es
dc.identifier.issn2077-0472es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68120
dc.descriptionProducción Científicaes
dc.description.abstractWeeds are unwanted and invasive plants that proliferate and compete for resources such as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops. Weed detection is crucial for the application of precision agriculture methods and for this purpose machine learning techniques can be used, specifically convolutional neural networks (CNN). This study focuses on the search for CNN architectures used to detect and identify weeds in different crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023). The results show the used of different devices to acquire the images for training, such as digital cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point for researchers wishing to implement these weed detection and identification techniqueses
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPrecision agriculturees
dc.subjectAgricultural innovationses
dc.subjectAgricultura - Innovaciones tecnológicases
dc.subjectWeedses
dc.subjectMalas hierbases
dc.subjectWeeds - Controles
dc.subjectControl de malezases
dc.subjectArtificial intelligence -- Agricultural applicationses
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectComputer visiones
dc.subjectVisión artificial (Robótica)es
dc.subjectImage processinges
dc.subjectImágenes, Tratamiento de lases
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectSustainable agriculturees
dc.subjectAgricultura sosteniblees
dc.titleApplication of convolutional neural networks in weed detection and identification: a systematic reviewes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/agriculture14040568es
dc.relation.publisherversionhttps://www.mdpi.com/2077-0472/14/4/568es
dc.identifier.publicationfirstpage568es
dc.identifier.publicationissue4es
dc.identifier.publicationtitleAgriculturees
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectUnion Europea, Programa Horizonte - (project HORIZON-CL6-2022-FARM2FORK-01)es
dc.identifier.essn2077-0472es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3102 Ingeniería Agrícolaes
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.17 Informáticaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record