• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68172

    Título
    Stable Manifolds of Two-dimensional Biholomorphisms Asymptotic to Formal Curves
    Autor
    López Hernanz, Lorena
    Raissy, Jasmin
    Ribón, Javier
    Sanz Sánchez, FernandoAutoridad UVA Orcid
    Año del Documento
    2021
    Documento Fuente
    International Mathematics Research Notices, Vol. 2021, No. 17, pp. 12847–12887
    Resumo
    Let F ∈ Diff (C2, 0) be a germ of a holomorphic diffeomorphism and let G be an invariant formal curve of F. Assume that the restricted diffeomorphism F|G is either hyperbolic attracting or rationally neutral non-periodic (these are the conditions that the diffeomorphism F|G should satisfy, if G were convergent, in order to have orbits converging to the origin). Then we prove that F has finitely many stable manifolds, either open domains or parabolic curves, consisting of and containing all converging orbits asymptotic to G. Our results generalize to the case where G is a formal periodic curve of F.
    ISSN
    1073-7928
    Revisión por pares
    SI
    DOI
    10.1093/imrn/rnz143
    Patrocinador
    First, third and fourth authors partially supported by Ministerio de Economía y Competitividad, Spain, process MTM2016-77642-C2-1-P; first and second authors, by MATHAmSud 2014 grant “Geometry and Dynamics of Holomorphic Foliations”; second author, by ANR project LAMBDA, ANR-13-BS01-0002.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68172
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP96 - Artículos de revista [98]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2019_Lopez-Ribon-Raissy-Sanz_IRMN.pdf
    Tamaño:
    280.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10