Mostrar el registro sencillo del ítem

dc.contributor.authorBosque Fernández, David del
dc.contributor.authorVila Crespo, Josefina María 
dc.contributor.authorRuipérez Prádanos, Violeta 
dc.contributor.authorFernández Fernández, Encarnación 
dc.contributor.authorRodríguez Nogales, José Manuel 
dc.date.accessioned2024-07-01T10:26:51Z
dc.date.available2024-07-01T10:26:51Z
dc.date.issued2023
dc.identifier.citationGels, 2023, Vol. 9, Nº. 8, 622es
dc.identifier.issn2310-2861es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68342
dc.descriptionProducción Científicaes
dc.description.abstractGlucose oxidase (GOX) and catalase (CAT) were co-immobilized in silica–calcium–alginate hydrogels to degrade must glucose. The effect of the enzyme dose (1.2–2.4 U/mL), the initial must pH (3.6–4.0), and the incubation temperature (10–20 °C) on the glucose consumption, gluconic acid concentration, pH, and color intensity of Verdejo must was studied by using a Box–Behnken experimental design and comparing free and co-immobilized enzymes. A reduction of up to 37.3 g/L of glucose was observed in co-immobilized enzyme-treated must, corresponding to a decrease in its potential alcohol strength of 2.0% vol. (v/v), while achieving a slight decrease in its pH (between 0.28 and 0.60). This slight acidification was due to a significant reduction in the estimated gluconic acid found in the must (up to 73.7%), likely due to its accumulation inside the capsules. Regarding the operational stability of immobilized enzymes, a gradual reduction in glucose consumption was observed over eight consecutive cycles. Finally, co-immobilized enzymes showed enhanced efficiency over a reaction period of 48 h, with an 87.1% higher ratio of glucose consumed per enzyme dose in the second 24 h period compared with free enzymes. These findings provide valuable insights into the performance of GOX–CAT co-immobilized to produce reduced-alcohol wines, mitigating excessive must acidification.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAcidityes
dc.subjectAcidoses
dc.subjectPolimerses
dc.subjectPolimeros y polimerizaciónes
dc.subjectBiomaterialses
dc.subjectBiomaterialeses
dc.subjectWine and wine makinges
dc.subjectVinos y vinificación - Análisises
dc.subjectMostos - Análisises
dc.subjectMicroencapsulationes
dc.subjectSiliciumes
dc.subjectSilicioes
dc.subjectColloidses
dc.subjectColoideses
dc.subjectOrganic chemistryes
dc.subjectInorganic chemistryes
dc.subjectMaterials sciencees
dc.subjectCiencia de los materialeses
dc.subjectFood sciencees
dc.subjectAgriculturees
dc.titleEntrapment of glucose oxidase and catalase in silica–calcium–alginate hydrogel reduces the release of gluconic acid in mustes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/gels9080622es
dc.relation.publisherversionhttps://www.mdpi.com/2310-2861/9/8/622es
dc.identifier.publicationfirstpage622es
dc.identifier.publicationissue8es
dc.identifier.publicationtitleGelses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.identifier.essn2310-2861es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2306 Química Orgánicaes
dc.subject.unesco2303 Química Inorgánicaes
dc.subject.unesco3309 Tecnología de Los Alimentoses
dc.subject.unesco3102 Ingeniería Agrícolaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem