Mostrar el registro sencillo del ítem
dc.contributor.author | Bosque Fernández, David del | |
dc.contributor.author | Vila Crespo, Josefina María | |
dc.contributor.author | Ruipérez Prádanos, Violeta | |
dc.contributor.author | Fernández Fernández, Encarnación | |
dc.contributor.author | Rodríguez Nogales, José Manuel | |
dc.date.accessioned | 2024-07-01T10:26:51Z | |
dc.date.available | 2024-07-01T10:26:51Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Gels, 2023, Vol. 9, Nº. 8, 622 | es |
dc.identifier.issn | 2310-2861 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68342 | |
dc.description | Producción Científica | es |
dc.description.abstract | Glucose oxidase (GOX) and catalase (CAT) were co-immobilized in silica–calcium–alginate hydrogels to degrade must glucose. The effect of the enzyme dose (1.2–2.4 U/mL), the initial must pH (3.6–4.0), and the incubation temperature (10–20 °C) on the glucose consumption, gluconic acid concentration, pH, and color intensity of Verdejo must was studied by using a Box–Behnken experimental design and comparing free and co-immobilized enzymes. A reduction of up to 37.3 g/L of glucose was observed in co-immobilized enzyme-treated must, corresponding to a decrease in its potential alcohol strength of 2.0% vol. (v/v), while achieving a slight decrease in its pH (between 0.28 and 0.60). This slight acidification was due to a significant reduction in the estimated gluconic acid found in the must (up to 73.7%), likely due to its accumulation inside the capsules. Regarding the operational stability of immobilized enzymes, a gradual reduction in glucose consumption was observed over eight consecutive cycles. Finally, co-immobilized enzymes showed enhanced efficiency over a reaction period of 48 h, with an 87.1% higher ratio of glucose consumed per enzyme dose in the second 24 h period compared with free enzymes. These findings provide valuable insights into the performance of GOX–CAT co-immobilized to produce reduced-alcohol wines, mitigating excessive must acidification. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Acidity | es |
dc.subject | Acidos | es |
dc.subject | Polimers | es |
dc.subject | Polimeros y polimerización | es |
dc.subject | Biomaterials | es |
dc.subject | Biomateriales | es |
dc.subject | Wine and wine making | es |
dc.subject | Vinos y vinificación - Análisis | es |
dc.subject | Mostos - Análisis | es |
dc.subject | Microencapsulation | es |
dc.subject | Silicium | es |
dc.subject | Silicio | es |
dc.subject | Colloids | es |
dc.subject | Coloides | es |
dc.subject | Organic chemistry | es |
dc.subject | Inorganic chemistry | es |
dc.subject | Materials science | es |
dc.subject | Ciencia de los materiales | es |
dc.subject | Food science | es |
dc.subject | Agriculture | es |
dc.title | Entrapment of glucose oxidase and catalase in silica–calcium–alginate hydrogel reduces the release of gluconic acid in must | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/gels9080622 | es |
dc.relation.publisherversion | https://www.mdpi.com/2310-2861/9/8/622 | es |
dc.identifier.publicationfirstpage | 622 | es |
dc.identifier.publicationissue | 8 | es |
dc.identifier.publicationtitle | Gels | es |
dc.identifier.publicationvolume | 9 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 2310-2861 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2306 Química Orgánica | es |
dc.subject.unesco | 2303 Química Inorgánica | es |
dc.subject.unesco | 3309 Tecnología de Los Alimentos | es |
dc.subject.unesco | 3102 Ingeniería Agrícola | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional