Mostrar el registro sencillo del ítem

dc.contributor.authorCornejo Bueno, Laura
dc.contributor.authorPérez Aracil, Jorge
dc.contributor.authorCasanova Mateo, Carlos
dc.contributor.authorSanz Justo, María Julia 
dc.contributor.authorSalcedo Sanz, Sancho
dc.date.accessioned2024-07-04T08:22:53Z
dc.date.available2024-07-04T08:22:53Z
dc.date.issued2023
dc.identifier.citationApplied Sciences, 2023, Vol. 13, Nº. 14, 8266es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68422
dc.descriptionProducción Científicaes
dc.description.abstractFor decades, humans have been confronted with numerous pest species, with the desert locust being one of the most damaging and having the greatest socio-economic impact. Trying to predict the occurrence of such pests is often complicated by the small number of records and observations in databases. This paper proposes a methodology based on a combination of classification and regression techniques to address not only the problem of locust sightings prediction, but also the number of locust individuals that may be expected. For this purpose, we apply different machine learning (ML) and related techniques, such as linear regression, Support Vector Machines, decision trees, random forests and neural networks. The considered ML algorithms are evaluated in three different scenarios in Western Africa, mainly Mauritania, and for the elaboration of the forecasting process, a number of meteorological variables obtained from the ERA5 reanalysis data are used as input variables for the classification–regression machines. The results obtained show good performance in terms of classification (appearance or not of desert locust), and acceptable regression results in terms of predicting the number of locusts, a harder problem due to the small number of samples available. We observed that the RF algorithm exhibited exceptional performance in the classification task (presence/absence) and achieved noteworthy results in regression (number of sightings), being the most effective machine learning algorithm among those used. It achieved classification results, in terms of F-score, around the value of 0.9 for the proposed Scenario 1.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDesert locustes
dc.subjectPlagas de insectoses
dc.subjectLangosta (Insecto)es
dc.subjectClassificationes
dc.subjectRegression analysises
dc.subjectAnálisis de regresiónes
dc.subjectStatistical Learninges
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.subjectRemote sensinges
dc.subjectTeledetecciones
dc.titleMachine learning classification–Regression schemes for desert locust presence prediction in western Africaes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/app13148266es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/13/14/8266es
dc.identifier.publicationfirstpage8266es
dc.identifier.publicationissue14es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - (project PID2020-115454GB-C21595)es
dc.identifier.essn2076-3417es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1209.01 Estadística Analíticaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem