• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Pedagogía
    • DEP54 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Pedagogía
    • DEP54 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69511

    Título
    The use of Deep Learning in Open Learning: A systematic review (2019 to 2023)
    Autor
    Estrada Molina, OdielAutoridad UVA Orcid
    Mena, Juanjo
    López Padrón, Alexander
    Año del Documento
    2024
    Editorial
    Athabasca University
    Descripción
    Producción Científica
    Documento Fuente
    The International Review of Research in Open and Distributed Learning, Agosto 2024, vol. 25, n. 3. p. 370-393.
    Resumo
    No records of systematic reviews focused on deep learning in open learning have been found, although there has been some focus on other areas of machine learning. Through a systematic review, this study aimed to determine the trends, applied computational techniques, and areas of educational use of deep learning in open learning. The PRISMA protocol was used, and the Web of Science Core Collection (2019–2023) was searched. VOSviewer was used for networking and clustering, and in-depth analysis was employed to answer the research questions. Among the main results, it is worth noting that the scientific literature has focused on the following areas: (a) predicting student dropout, (b) automatic grading of short answers, and (c) recommending MOOC courses. It was concluded that pedagogical challenges have included the effective personalization of content for different learning styles and the need to address possible inherent biases in the datasets (e.g., socio-demographics, traces, competencies, learning objectives) used for training. Regarding deep learning, we observed an increase in the use of pre-trained models, the development of more efficient architectures, and the growing use of interpretability techniques. Technological challenges related to the use of large datasets, intensive computation, interpretability, knowledge transfer, ethics and bias, security, and cost of implementation were also evident.
    Materias Unesco
    5801.04 Teorías Educativas
    5802.04 Niveles y Temas de Educación
    Palabras Clave
    open learning
    deep learning
    MOOC
    systematic review
    ISSN
    1492-3831
    Revisión por pares
    SI
    DOI
    10.19173/irrodl.v25i3.7756
    Version del Editor
    https://www.irrodl.org/index.php/irrodl/article/view/7756
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/69511
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP54 - Artículos de revista [151]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    7756_Estrada-Molina+(1).pdf
    Tamaño:
    705.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10