Show simple item record

dc.contributor.authorUsátegui Martín, Iciar 
dc.contributor.authorArroyo, Yoel
dc.contributor.authorTorres Aranda, Ana María
dc.contributor.authorBarbado Ajo, María Julia 
dc.contributor.authorMateo, Jorge
dc.date.accessioned2024-09-19T12:50:29Z
dc.date.available2024-09-19T12:50:29Z
dc.date.issued2024
dc.identifier.citationBioengineering, 2024, Vol. 11, Nº. 1, 90es
dc.identifier.issn2306-5354es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70050
dc.descriptionProducción Científicaes
dc.description.abstractSystemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts multiple bodily systems and manifests with varied clinical manifestations. Early detection is considered the most effective way to save patients’ lives, but detecting severe SLE activity in its early stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of this research, the Random Forest (RF) method has been employed due to its performance attributes. With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhancement in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear Regression (LR) methods demonstrated inferior performance, with respective values around 81%, 78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE patients grounded in ML systems.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSystemic lupus erythematosuses
dc.subjectLupus eritematosoes
dc.subjectAutoimmune diseaseses
dc.subjectEnfermedades autoinmuneses
dc.subjectMedical treatmentes
dc.subjectTratamiento médicoes
dc.subjectMedicinees
dc.subjectInmunologyes
dc.subjectPublic healthes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.titleSystemic lupus erythematosus: how machine learning can help distinguish between infections and flareses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/bioengineering11010090es
dc.relation.publisherversionhttps://www.mdpi.com/2306-5354/11/1/90es
dc.identifier.publicationfirstpage90es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleBioengineeringes
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectMinisterio de Asuntos Económicos y Transformación Digital (MINECO) y Cátedra UCLM-Telefónica - (grant PID2021-125122OB-I00)es
dc.identifier.essn2306-5354es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco2412 Inmunologíaes
dc.subject.unesco3212 Salud Publicaes
dc.subject.unesco1203.04 Inteligencia Artificiales


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record