• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Medicina, Dermatología y Toxicología
    • DEP52 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Medicina, Dermatología y Toxicología
    • DEP52 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70050

    Título
    Systemic lupus erythematosus: how machine learning can help distinguish between infections and flares
    Autor
    Usátegui Martín, IciarAutoridad UVA
    Arroyo, Yoel
    Torres Aranda, Ana María
    Barbado Ajo, María JuliaAutoridad UVA
    Mateo, Jorge
    Año del Documento
    2024
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Bioengineering, 2024, Vol. 11, Nº. 1, 90
    Abstract
    Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts multiple bodily systems and manifests with varied clinical manifestations. Early detection is considered the most effective way to save patients’ lives, but detecting severe SLE activity in its early stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of this research, the Random Forest (RF) method has been employed due to its performance attributes. With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhancement in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear Regression (LR) methods demonstrated inferior performance, with respective values around 81%, 78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE patients grounded in ML systems.
    Materias (normalizadas)
    Systemic lupus erythematosus
    Lupus eritematoso
    Autoimmune diseases
    Enfermedades autoinmunes
    Medical treatment
    Tratamiento médico
    Medicine
    Inmunology
    Public health
    Machine learning
    Aprendizaje automático
    Artificial intelligence
    Materias Unesco
    32 Ciencias Médicas
    2412 Inmunología
    3212 Salud Publica
    1203.04 Inteligencia Artificial
    ISSN
    2306-5354
    Revisión por pares
    SI
    DOI
    10.3390/bioengineering11010090
    Patrocinador
    Ministerio de Asuntos Económicos y Transformación Digital (MINECO) y Cátedra UCLM-Telefónica - (grant PID2021-125122OB-I00)
    Version del Editor
    https://www.mdpi.com/2306-5354/11/1/90
    Propietario de los Derechos
    © 2024 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70050
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP52 - Artículos de revista [181]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Systemic-Lupus-Erythematosus.pdf
    Tamaño:
    4.545Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10